Quantum Chemistry meets Solid State: HOMO-LUMO gap in proximity of metal surface

Andrzej P. Kądzielawa

¹Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński, Kraków ²IT4Innovations, Vysoká škola báňská - Technická univerzita Ostrava ¹andrzej.kadzielawa@uj.edu.pl ²andrzej.piotr.kadzielawa@vsb.cz

VŠB TECHNICKÁ ||||| UNIVERZITA OSTRAVA IT4INNOVATIONS NÁRODNÍ SUPERPOČÍTAČOVÉ CENTRUM

Kraków, December 2, 2019

1-but|hex|octyl-3-methylimidazolium

Kraków, Dec. 2, 2019

1/12

Motivation

Motivation

Corrosion

- Rust-resistant alloys
- Galvanization
- Coatings and painting
- Bluing
- Humidity control
- Inhibitors

Chemistry

- exact methods
- electronic correlations
- real-space wavefunctions
- small systems

Physics

- large systems
- magnetism
- metallicity
- approximate correlations

Theoretical modelling

Hypothesis I

Imidazole ionic liquid derivative compound will inhibit corrosion.

$$C_4H_9 C_6H_{13} C_8H_{17}$$

Hypothesis II

Inhibitor quality depends on its HOMO-LUMO gap on surface.

We need:

Metallic surface

Easy using DFT

Molecular [BHO]MI[øBCS]

Easy using Hartree-Fock + vdW

DFT using exact-exchange information

Andrzej P. Kądzielawa

1-but|hex|octyl-3-methylimidazolium

Surfaces: [100],[110],[111] towards the 30 Å vacuum $\| \hat{z}$ Surface energy

$$\gamma = \frac{E_{\mathsf{slab}} - \mathsf{N} \cdot \mathsf{E}_{\mathsf{bulk}}}{2\mathsf{A}},$$

where E_{slab} is the energy of a slab of N atoms with area A exposed on vacuum, and E_{bulk} is energy (per atom) of bulk bcc iron.

			. (1)		
	N	$\frac{E_G}{N}$ (eV)	A (Å ²)	γ (eV Å ⁻²)	$\gamma (J m^{-2})$
bulk	54	-8.34069			
Fe _[100]	108	-8.12508	74.132	0.157	2.52
Fe _[111]	108	-7.92548	128.401	0.175	2.80
Fe _[110]	72	-8.04459	69.893	0.153	2.44
W.R.	Tyson and V	V.A. Miller, Surf	ace Science 62 , 2	267 (1977)	2.41
I. H. S	Sahputra <i>et</i> .	al., Phys. Status	s Solidi B 254 , 16	500408 (2017)	2.44

Local potential

Andrzej P. Kądzielawa

n Kraków, Dec. 2, 2019

Results Free molecule

1-*-3-methylimidazolium [BHO]MIM: HOMO | LUMO

$$\eta \equiv \frac{1}{2} \left(-E_{\text{HOMO}} + E_{\text{LUMO}} \right) \quad \sigma \equiv \frac{2}{-E_{\text{HOMO}} + E_{\text{LUMO}}} \quad \chi \equiv -\frac{1}{2} \left(E_{\text{HOMO}} + E_{\text{LUMO}} \right)$$

Compound	<i>Е</i> номо (eV)	E_{LUMO} (eV)	ΔE (eV)	η (eV)	$\sigma (eV^{-1})$
BMIM up:	-3.006	-0.113	2.893	1.446	0.691
HMIM up:	-2.984	-0.096	2.887	1.443	0.692
OMIM up:	-2.798	-0.004	2.794	1.397	0.715
BMIM do:	-6.050	-0.113	5.936	2.968	0.336
HMIM do:	-6.024	-0.098	5.926	2.963	0.337
OMIM do:	-5.910	-0.038	5.871	2.935	0.340

Results Free molecule

1-*-3-methylimidazolium +[Br CI HSO] [BHO]MI[BCS]

$$\eta \equiv \frac{1}{2} \left(-E_{\text{HOMO}} + E_{\text{LUMO}}\right) \quad \sigma \equiv \frac{2}{-E_{\text{HOMO}} + E_{\text{LUMO}}} \quad \chi \equiv -\frac{1}{2} \left(E_{\text{HOMO}} + E_{\text{LUMO}}\right)$$

$$\frac{\text{Compound}}{\text{E}_{\text{HOMO}} \left(\text{eV}\right) E_{\text{LUMO}} \left(\text{eV}\right) \Delta E \left(\text{eV}\right) \quad \eta \left(\text{eV}\right) \quad \sigma \left(\text{eV}^{-1}\right) \quad \chi \left(\text{eV}\right) }$$

$$\frac{\text{BMIB}}{\text{BMIB}} \quad \begin{array}{c} -4.137 \quad -1.968 \quad 2.169 \quad 1.084 \quad 0.922 \quad 3.053 \\ \text{HMIB} \quad -4.146 \quad -2.130 \quad 2.016 \quad 1.008 \quad 0.992 \quad 3.138 \\ \text{OMIB} \quad \begin{array}{c} -4.200 \quad -2.158 \quad 2.042 \quad 1.021 \quad 0.979 \quad 3.179 \\ \text{BMIC} \quad -4.318 \quad -1.884 \quad 2.434 \quad 1.217 \quad 0.822 \quad 3.101 \\ \text{HMIC} \quad -4.410 \quad -2.001 \quad 2.409 \quad 1.204 \quad 0.830 \quad 3.205 \\ \text{OMIC} \quad -4.449 \quad -2.068 \quad 2.381 \quad 1.191 \quad 0.840 \quad 3.259 \\ \text{BMIS} \quad -4.483 \quad -2.827 \quad 1.656 \quad 0.828 \quad 1.208 \quad 3.655 \\ \text{HMIS} \quad -4.337 \quad -2.749 \quad 1.588 \quad 0.794 \quad 1.259 \quad 3.543 \\ \text{OMIS} \quad -4.172 \quad -2.660 \quad 1.512 \quad 0.756 \quad 1.323 \quad 3.416 \\ \end{array}$$

On α -Fe 110 surface

Where Physics meets Chemistry

Equivalent quantities	
Chemistry	Physics
Hardness η	derivative of chemical potential
$\eta = \frac{1}{2}(-E_{HOMO} + E_{LUMO})$	$\eta = rac{d\mu}{dN}$

On α -Fe 110 surface

1-*-3-methylimidazolium: hardness & electronegativity

$$\chi \equiv -\frac{1}{2} \left(E_{\text{HOMO}} + E_{\text{LUMO}} \right); \quad \eta \equiv \frac{1}{2} \left(-E_{\text{HOMO}} + E_{\text{LUMO}} \right); \quad \sigma \equiv \frac{2}{-E_{\text{HOMO}} + E_{\text{LUMO}}}.$$
(1)

Compound	НОМО	LUMO	$\Delta E (eV)$	η (eV)	$\sigma (eV^{-1})$	χ (eV)	ΔN
BMIC	-4.843	-2.291	2.552	1.276	0.784	3.567	0.47
HMIC	-4.973	-2.423	2.550	1.275	0.784	3.698	0.47
OMIC	-5.030	-1.999	3.031	1.515	0.660	3.514	0.47
BMIB	-4.988	-2.057	2.931	1.465	0.682	3.522	0.76
HMIB	-5.011	-2.119	2.892	1.446	0.692	3.565	0.85
OMIB	-5.092	-2.131	2.960	1.480	0.676	3.612	0.85
BMIM	-8.046	-3.174	4.872	2.436	0.411	5.610	-0.55
HMIM	-7.942	-2.881	5.061	2.531	0.395	5.411	-0.43
OMIM	-7.661	-2.928	4.733	2.367	0.423	5.294	-0.40
BMIS	-7.302	-2.313	4.989	2.494	0.401	4.807	-0.08
HMIS	-8.156	-2.625	5.531	2.766	0.362	5.391	-0.31
OMIS	-7.911	-2.495	5.417	2.708	0.369	5.203	-0.28

Andrzej P. Kądzielawa

1-but|hex|octyl-3-methylimidazolium

Problem with HSO4

1-*-3-methylimidazolium bromide

Note

Near-to linear dependence of ΔN in proximity of the surface.

- ∢ ∃ →

10/12

butyl

Extrapolated values

compound	charge transfer ΔN
BMIS	0.94
HMIS	0.84
OMIS	0.79
Andrzei P. Kadzielawa	1-but/bex/octyl-3-methylimidazolium Kraków Dec 2 2019 11/1

Problem with HSO4

1-*-3-methylimidazolium: Adsorption energy

$$E_{ads} = E_{Fe+MIM} - E_{MIM} - E_{Fe}$$
$$E_{ads:WF} = E_{ads} - \Phi_{Fe+MIM} + \Phi_{MIM} + \Phi_{Fe}$$

Compound	$E_{Fe+MIM} \; (eV)$	E_{MIM} (eV)	E_{Fe} (eV)	$E_{ads}\;(eV)$	$\Phi_{Fe+MIM} \; (eV)$	$\Phi_{MIM} \; (eV)$	$\Phi_{Fe} \; (eV)$	$E_{ads;WF} \; (eV)$
BMIB	-1249.057	-145.925	-1102.743	-0.389	2.733	0.170	2.599	-0.354
HMIB	-1281.939	-178.917	-1102.743	-0.279	2.833	0.286	2.599	-0.228
OMIB	-1314.937	-211.910	-1102.743	-0.284	2.890	0.362	2.599	-0.214
BMIC	-1249.310	-146.391	-1102.743	-0.176	2.766	0.180	2.599	-0.164
HMIC	-1282.304	-179.374	-1102.743	-0.187	2.864	0.314	2.599	-0.139
OMIC	-1315.305	-212.351	-1102.743	-0.211	2.927	0.395	2.599	-0.145
BMIM	-1247.002	-142.140	-1102.743	-2.118	2.702	0.128	2.599	-2.095
HMIM	-1280.269	-175.202	-1102.743	-2.325	2.712	0.152	2.599	-2.287
OMIM	-1313.327	-208.218	-1102.743	-2.366	2.761	0.178	2.599	-2.351

- 3 →