VŠB TECHNICKÁ |||||UNIVERZITA OSTRAVA

Openenský Conference of IT4Innovations, Ostrava, November 2019 Mapping Density Functional Theorem onto Heisenberg model Andrzej P. Kądzielawa[†], Pablo Nieves, and Dominik Legut IT4Innovations, VŠB - Technická univerzita Ostrava, Czech Republic

MOTIVATION

Employing Quantum Mechanics in modelling thermal properties of new materials has a significant disadvantage - far from the thermodynamic limit we do not have temperature defined. Hence to get transitional temperatures e.g. **Curie (Néel)** T_C (T_N) for a proposed **magnetic material**, we are limited to to the model calculations, e.g. the established atomistic spin-dynamics (ASD) simulations [1,2]. This in turn requires us to find the explicit form of the magnetic **Heisenberg Hamiltonian** (cf. *Some Math* for more details)

$$\mathcal{H} \equiv -\frac{1}{2} \sum_{i \neq j} J_{ij} \mathbf{s}_i \cdot \mathbf{s}_j,$$

where J_{ij} are exchange interaction magnitudes of unitary vectors $\{s_i\}$ on a given lattice.

We are aiming at creating **a generic approach** removing the burden of designing the Hamiltonian from user while **minimising the computational cost** (in contrast to the Korringa-Kohn-Rostoker (KKR) Green function formalism [3] and the frozen-magnon approach [4]).

Some Math & Physics

We assume that there exist a blockdiagonal **effective Hamiltonian** $\hat{\mathcal{H}}_{eff}$ corresponding to the resultant state of our DFT calculations

$$\hat{\mathcal{H}}_{eff} = \begin{pmatrix} \hat{\mathcal{H}}_{magnetic} \\ \hat{\mathcal{H}}_{remaindered} \end{pmatrix}.$$
where $\hat{\mathcal{H}}_{magnetic} = \hat{\mathcal{H}}(\{\hat{\mathbf{M}}_i\})$ depends
on the on-site magnetization operators
 $\{\hat{\mathbf{M}}_i\}.$ For the case of colinear-spin sys-
tem this simplifies to

$$\Delta E_{n \in N} \stackrel{\Delta M \ll M}{\approx} \sum_{\langle i,j \rangle} -\mathbf{J}_{ij} M_i^0 M_j^n,$$

where we have a set of N metastable magnetic states with magnetization norm $M_i^n \equiv M_i^0 + \Delta M_i^n$ (*i*, *j* are sites with exactly one spin *flipped*).

S

Mapping software: JorG π

The aim is to process the **ab-initio model** of magnetic material, generate a number of possibly stable states with rotated spin, and calculate **the effective Heisenberg model** from the output.

	JorGp	oi re	equire	s Pyth	ion	3.6	with
	numpy	scipy	spglib	matplotlib	setup	ptools d	defusedxm
	1.16.0	1.0.0	1.12.0	3.0.0	40	.8.0	-
i	The b	ottle	eneck	section	- Is	ing n	nodel
	solve	er (cf	. Me	tastable	stat	es) ut	tilizes
	C++1	7 an	d GN	IU Scier	ntific	: Libr	ary.
[[8} [11	eighbor NEIGHB [reference R 7,8,9,10,11,12 ,6p,3d,4d,5d,4 ,F}]] [s ned]	00] LEFERENCE] L,13,14,15,16,17,1 L,13,14,15,16,17,1 L,15f} [{2p,3p,4p, Lymmetry] [redur	- 18} [{1,2,3,4,5,6,7,8,9, ,5p,6p,3d,4d,5d,4f,5f} .			

16,17,18

[ex	tra-dimentions EXTRA-DIMENTIONS]
nd minimal number of u	nique spin-flips
tional arguments: h,help input INPUT, -i INPU	show this help message and exit T
-incar INCAR,INCAR	input POSCAR file
output OUTPUT, -o OU	TPUT output directory
cutOff CUTOFF, -R CU	TOFF a cut-off distance (in Å) for calculations
neighbor NEIGHBOR, -I	N NEIGHBOR a rank of the last Neighbor taken into account
	narrows down the atomic selection to the atoms in
-reference REFERENCE,	
-elements ELEMENTS, -	
	string of all elements taken into account (eg. 'CuO') ,8,9,10,11,12,13,14,15,16,17,18} [{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
-period {2p,3p,4p,5p,6	group number (eg. 1 <=> 'HLiNaKRbCsFr') 6p,3d,4d,5d,4f,5f} [{2p,3p,4p,5p,6p,3d,4d,5d,4f,5f}]
	period name (eg. 3d <=> '\$Sc\$Ti\$V\$Cr\$Mn\$Fe\$Co\$Ni\$Cu\$Zn\$')
	F}] block name (eg. P <=> '\$B\$C\$N\$O\$F\$Al\$Si\$P\$S\$Cl\$Ga\$Ge\$A s§Se\$Br\$In\$Sn\$Sb\$Te\$I\$Tl\$Pb\$Bi\$Po\$At\$')
	symmetry run only (default False) creates a redundant system of equations for final
(calculation of the Heisenberg exchange interaction (default False)
	work-in-progress) is sping-orbit coupling enabled (default False)
	should use refined supercell (default False)
-extra-dimentions EXT	RA-DIMENTIONS, -X EXTRA-DIMENTIONS

fined should use refined supercell (default False) tra-dimentions EXTRA-DIMENTIONS, -X EXTRA-DIMENTIONS string "X Y Z" of extra cell copies in each directions (eg. "0 0 <u>1</u>")

EXEMPLARY RESULTS - FEPT

Space group: **P4/mmm** (123):

METASTABLE STATES

range	# sites	# possible states
1 NN	2	$2^1 - 1 = 1$
2 NN	8	$2^7 - 1 = 127$
3 NN	16	$2^{15} - 1 = 32767$
5 NN	54	$2^{53} - 1 \sim 10^{16}$
8 NN	128	$2^{127} - 1 \sim 10^{38}$
13 NN	250	$2^{249} - 1 \sim 10^{75}$
21 NN	432	$2^{431} - 1 \sim 10^{130}$

Number of possible states (assuming spinreversal symmetry) of a Bravais bcc lattice versus range of interactions.

In *the idealized magnetic ground state* the ordering of magnetic moment directions s_i^0 is **unambiguously defined by sign** of exchange interaction magnitudes J_{ij} .

I.e., to find metastable sates we use **a ferromagnetic** (!) 3D Ising model with a solver using Simulated Annealing.

$$H = -\sum_{i \neq j} K_{ij} \sigma_i \sigma_j, \& K_{ij} \equiv J_{ij} \mathbf{s}_i^0 \cdot \mathbf{s}_j^0 > 0.$$

ACKNOWLEDGMENTS

Authors thank Dr. Sergiu Arapan

$a = b = 2.66084 \text{ A}; c = 3.68635 \text{ A}; \alpha = \beta = \gamma = 90^{\circ}$							
			$\mu_{Fe}~(\mu_{E}$	B) μ_{Pt} (μ_B)		
		FLEUR [6]	2.866	0.384			
		VASP [5]	2.823	0.318			
		JorGpi	2.849	0.315			
		Distance (Å)	FLEUR [6]	SPR-KKR [7]	JorGpi	Ref. [8]	
	$J_{[100]} ({\rm meV})$	2.661	25.73	31.52	35.77	22.25	
	$J_{[001]}$ (meV)	3.686	8.82	-3.72	13.28	1.15	
	$J_{[110]}$ (meV)	3.763	19.89	17.56	19.24	18.58	
	$J_{[101]}$ (meV)	4.546	8.20	8.58	15.67	16.03	
	$J_{[111]}$ (meV)	5.268	-15.32	-10.58	-21.07	-19.75	

for the helpful discussions and his harsh criticism.

This work was supported by the European Regional Development Fund in the IT4Innovations national supercomputing center - path to exascale project, project number CZ.02.1.01/0.0/0.0/16_013/0001791 within the Operational Programme Research, Development and Education and grant No. 17-27790S of the Czech Science Foundation and SGS project No. SP2019/110.

Background vector created by Freepik https://www.freepik.com/free-vector/ abstract-colorful-flow-shapes-background_5226074.htm

BIBLIOGRAPHY

- [1] P. Nieves, et al., Phys. Rev. B 96, 224411 (2017).
- [2] A. I. Liechtenstein, et al., J. Magn. Magn. Mater. 67, 65 (1987).
- [3] N. M. Rosengaard and B. Johansson, Phys. Rev. B 55, 14975 (1997).
- [4] A. Khachaturyan, S. Semenovskaya, and B. Vainshtein, Sov. Phys. Crystallography 24, (1979).
 [5] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

[6] Stefan Blügel, et al., FLEUR-project, flapw.de/

site/ (2019); acc. 30.10.2019.

[7] Hubert Ebert, SPRKKR, ebert.cup. uni-muenchen.de (2019); acc. 30.10.2019.

[8] Oleg N. Mryasov, J.M.M.M. **272-276**, 800 (2004).