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MOTIVATION
One of the important problems in Condensed Matter Physics

is the metal-insulator transition of the Mott-Hubbard type [1]. In
[2] Spałek et al. study the quantum critical scaling of the wave
function near MIT. Our aims are to investigate:

1. quantum critical behaviour of the wave function near Mott
transition;

2. evaluation of the electron wave function in the strongly cor-
related system;

3. effect of the external magnetic field;

4. combination of first and second quantisations;

We start with the Extended Hubbard model [3]:
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where h = 1
2gµBHa is a reduced magnetic field.

METHODS APPLIED
EDABI

We obtain Hamiltonian parameters by approximating Wannier
orbital by series of Gaussian functions:
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β and γ parameters depend explicitly on the integrals of Ψi func-
tions and z is the number of nearest neighbours. Parameters Ba
and Γa are derived by minimising energy of single atom (Hamil-
tonian H a.u.

= −52 − 2

|r−Ri| ). n is a number of Gaussian functions

used for the approximation. Parameter α is found as a value min-
imising the ground energy. The Hamiltonian parameters are ob-
tained by integrating:

tij = 〈wi|H1 |wj〉 ,
U = 〈wiwi|V12 |wiwi〉 , etc.,

(3)

where H1 is the Hamiltonian for a single particle in the system,
and V12 represents interparticle interaction.

Statistically-consistent Gutzwiller Approximation

To minimise α for each considered system we have to obtain its
ground energy. It was proven [4] that Gutzwiller Approximation
not always results in finding the lowest energy. For such a purpose
we minimise functionalF with two additional molecular fields λm
and λn, coupled with m and n respectively:
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DETAILED CHARACTERISTICS AT MIT
Calculations were performed on 96-thread node at ATOMIN Cluster at Marian Smoluchowski Institute of Physics, for SC 3D crystal (hence z = 6). For optimising complexity STO − 3G basis (3 Gaussian

per Ψi) was chosen. Alternative STO − 7G would slightly improve accuracy but the average execution time would be increased by the factor of 30.

HAMILTONIAN PARAMETERS
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Figure 1: left: hopping integral t and double occupancy number d
right: intraatomic interaction magnitude U , calculated for no magnetic

field in relation with lattice size.

GENERAL PROPERTIES
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Figure 2: top: α parameter bottom: ground energy EG in relation with
lattice size R for two different magnitudes of magnetic field; magnified

shows the delay of MIT transition
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CHARACTERISTICS OF THE MODEL
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Figure 3: a density plot of α [R,Ha]; the change of value with magnetic
field is irrelevant.
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Figure 4: a density plot of m [R,Ha]; the change of value in metal state is
relevant (shown on figure 7).

FURTHER CHARACTERISTICS
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Figure 5: Derivative ∂α
∂R

has a discontinuity at the critical point. At the
moment it is also observable for derivative ∂E

∂R
(upper right). More

precise calculation are on their way.
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Figure 6: magnetic susceptibility χ = ∂m
∂h

for different values of external
magnetic field; metal-insulator transition clearly shown.

CONCLUSIONS
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Figure 7: intersections of Figure 4 for three different lattice sizes, cutting
magnetisation on the maximum, on the slope just before and after the

phase transition

Our calculations reproduce the results in [2] with extension of
the study of the influence of magnetic field.

Obtained data suggest that the critical behaviour of function
size (∝ α−1) though it influences the ground state energy, can still
be considered physical (more accurate calculation required to in-
vestigate ground energy near MIT - Figure 5).

The behaviour of susceptibility (Figure 6), especially before the
critical point is a starting point for new calculations exchanging
existing lattice with two separate ones.
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