

Sympozjum obliczeniowych metod ab initio

Efekty wieloelektronowe w nanoukładach: ścisłe wyniki dla nanostruktury kropka - pierścień

Andrzej P. Kądzielawa^{1†}, Andrzej Biborski², A. Gorczyca-Goraj³, E. Zipper³, M. M. Maśka³, Józef Spałek^{1,2}

¹Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński, ul. Łojasiewicza 11, PL-30-348 Kraków ²Akademickie Centrum Materiałów i Nanotechnologii, AGH Akademia Górniczo-Hutnicza, Al. Mickiewicza 30, PL-30-059 Kraków ³Instytut Fizyki, Uniwersytet Śląski, ul. Uniwersytecka 4, PL-40-007 Katowice

[†]kadzielawa@th.if.uj.edu.pl

MOTYWACJA

Układy kropka kwantowa (QD) – nanopierścień (QR) tworzą ciekawy układ nanofizyczny (DRN). Postuluje się, że takie struktury podatne będą na tzw. *inżynierię funkcji falowej,* pozwalającą na sterowanie właściwości transportowych, czy optycznej absorbcji układu przy zmianie potencjału kropki [1,2]. Stąd pojawia się pytanie o właściwości takiego układu dla $N_e > 1$ elektronów. Naszym celem jest:

- jawne wyliczenie wyrazów oddziaływania kulombowskiego,
- wyznaczenie stanów wieloelektronowych układu,
- określenie widma energetycznego i stopni degeneracji rozwiązań stanu podstawowego i pierwszego stanu wzbudzonego,

PROBLEM JEDNOCZĄSTKOWY

Rozwiązaniem problemu jednocząstkowego

$$\left(\frac{\mathbf{p}^2}{2m^*} + V(\mathbf{r})\right)\psi_{nl}(\mathbf{r}) = \epsilon_{nl}\psi_{nl}(\mathbf{r}),$$

z potencjałem układu kropka kwantowa pierścień (jak z lewej) są funkcje falowe [1,2] w postaci

$\psi_{nl}(\mathbf{r}) = R_{nl}(r)exp(il\phi).$

Dla przypadku zdegenerowanego $\epsilon_{nl} = \epsilon_{n\bar{l}}$ i $R_{nl}(r) = R_{n\bar{l}}(r)$ możemy wyróżnić rzeczywiste rozwiązania w postaci

0.04

• wykreślenie prawdopodobieństwa znalezienia elektronu w kropce i pierścieniu.

Schemat potencjału układu kropka kwantowa – pierścień

METODA

Opis układu wieloelektronowego rozpoczynamy od operatorów pola:

$$\hat{\Psi}_{\sigma}(\mathbf{r}) = \sum_{i=1;\sigma=\pm 1}^{M} \varphi_{i\sigma}(\mathbf{r}) \hat{c}_{i\sigma}; \quad \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \equiv \left(\hat{\Psi}_{\sigma}(\mathbf{r})\right)^{\dagger},$$

gdzie $\{\varphi_{i\sigma}\}$ stanowi ortonormalną bazę jednocząstkowych funkcji falowych, a $\hat{c}_{i\sigma}$ $(\hat{c}_{i\sigma}^{\dagger})$ to operatory anihilacji i kreacji elektronu o spinie σ na orbitalu *i*. Ostatecznie hamiltonian wieloelektronowy przyjmuje postać:

$$\mathcal{H} \equiv \sum_{\sigma} \int d^3 r \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \mathcal{H}_1 \hat{\Psi}_{\sigma}(\mathbf{r}) + \frac{1}{2} \sum_{\sigma\sigma'} \int \int d^3 r d^3 r' \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \hat{\Psi}_{\sigma'}^{\dagger}(\mathbf{r}') V(\mathbf{r} - \mathbf{r}') \hat{\Psi}_{\sigma'}(\mathbf{r}') \hat{\Psi}_{\sigma}(\mathbf{r}') = \sum_{ij} \sum_{\sigma} t_{ij} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \frac{1}{2} \sum_{ijkl} \sum_{\sigma,\sigma'} V_{ijkl} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma'}^{\dagger} \hat{c}_{l\sigma'} \hat{c}_{k\sigma},$$

gdzie

$$t_{ij} = \int d^3 r \varphi_i^*(\mathbf{r}) \mathcal{H}_1 \varphi_j(\mathbf{r}),$$
$$V_{ijkl} = \iint d^3 r d^3 r' \varphi_i^*(\mathbf{r}) \varphi_j^*(\mathbf{r}') \frac{e^2}{\varepsilon |\mathbf{r} - \mathbf{r}'|} \varphi_l(\mathbf{r}') \varphi_k(\mathbf{r}).$$

Hamiltonian diagonalizowany jest dla ustalonej, dostatecznie dużej, skończonej bazy funkcji jednocząstkowych, ustalającej parametry mikroskopowe t_{ij} , V_{ijkl} (patrz ramka *Parametry mikroskopowe*).

Jako bazę jednocząstkowych funkcji falowych (patrz ramka Baza funkcji jednocząstkowych) wybieramy funkcje własne hamiltonianu jednocząstkowego \mathcal{H}_1 o najniższych wartościach energii, co skutkuje uproszczeniem

BAZA FUNKCJI JEDNOCZĄSTKOWYCH

Wybrane jednocząstkowe funkcje falowe w bazie rzeczywistej $\{\varphi_i\}$ dla wartości potencjału w kropce kwantowej $V_{\rm QD} = 0meV$.

QUANTUM METALLIZATION TOOLS

Obliczenia zostały wykonane korzystając z biblioteki QMT, pozwalającej na szybkie rozwiązywanie

PARAMETRY MIKROSKOPOWE

Ewolucja wybranych parametrów mikroskopowych: hubbardowskie odpychanie $U_i \equiv V_{iiii}$, międzystanowe odpychanie $K_{ij} \equiv V_{ijij}$, całka wymiany $J_{ij} \equiv V_{ijji}$, i wielostanowe parametry $V_{[ijkl]}$.

Wszystkie całki (przy M = 10 jednocząstkowych funkcji falowych 10000) liczone są metodą Monte Carlo przy zastosowaniu biblioteki CUBA [4], z dokładnością 0.005 meV. Gwałtowne zmiany wartości parametrów mikroskopowych w okoli- $\operatorname{cach} V_{\mathrm{QD}} = -2meV \,\mathrm{i} \, V_{\mathrm{QD}} = 3meV \,\mathrm{sa} \,\mathrm{skorelowane} \,\mathrm{z} \,\mathrm{przecinaniem}$ się i odpychaniem jednocząstkowych poziomów energetycznych.

 $t_{ij} = \epsilon_i \delta_{ij},$

gdzie ϵ_i to energia jednocząstkowa, a δ_{ij} delta Kroneckera.

Quantum Metallization Tools https://bitbucket.org/azja/qmt

podobnych problemów [3].

WYNIKI: 2 I 3 ELEKTRONY

Energia stanu podstawowego i pierwszego stanu wzbudzonego dla $N_e = 1, 2, 3$.

2 elektrony

Możemy zaobserwować ewolucję układu wieloelektronowego ze stanu, gdzie elektrony znajdują się w kropce kwantowej, do stanu gdzie znajdą się w pierścieniu.

Podobną ewolucję można zaobserwować dla pierwszego stanu wzbudzonego.

Profile gęstości (a), b)) i obsadzenia poszczególnych stanów (c)) dla $V_{\rm QD} = -6meV, 4meV$

3 elektrony

W przypadku trzech elektronów układ podobnie ewoluuje z sytuacji, gdzie dwa elektrony są w kropce, a jedna w pierścieniu, do stanu gdzie wszystkie elektrony znajdują się w pierścieniu.

DEGENERACJA

Stopnie degeneracji dla różnych potencjałów QD, dla $N_e = 2, 3$.								
-	2 elektrony				3 elektrony			
	stan podstawowy		stan wzbudzony		stan podstawowy		stan wzbudzony	
$V_{\rm QD} \ ({ m meV})$	deg.	S_{tot}	deg.	S_{tot}	deg.	S_{tot}	deg.	S_{tot}
-6	1	0	3×2	1	2×3	1/2	2×2	1/2
-5	1	0	3×2	1	2×3	1/2	2×2	1/2
-4	1	0	3	1	2×3	1/2	4×2	3/2
-3	1	0	3	1	2×3	1/2	4×2	3/2
-2	1	0	3	1	2×3	1/2	4×2	3/2
-1	1	0	3	1	2×3	1/2	4×2	3/2
0	1	0	3	1	2×3	1/2	4×2	3/2
1	1	0	3	1	2×3	1/2	4×2	3/2
2	1	0	3×2	1	4	3/2	2×2	1/2
3	1	0	3×2	1	4	3/2	2×2	1/2
4	1	0	3×2	1	4	3/2	2×2	1/2
5	1	0	3×2	1	4	3/2	2×2	1/2
6	1	0	3×2	1	4	3/2	2×2	1/2

WPŁYW PARAMETRÓW WIELOSTANOWYCH

W zaprezentowanej metodzie możemy dowolnie włączać i wyłączać wybrane oddziaływania, stąd możliwa jest analiza wpływu oddziaływań trój- i czterostanowych na rozwiązanie.

Profile gęstości (a), b)) i obsadzenia poszczególnych stanów (c)) dla $V_{\rm QD} = -4meV, -2meV, 2meV, 4meV$

Część ładunku znajdująca się w kropce (QD) i pierścieniu (QR) w funkcji potencjału kropki V_{QD} dla 2 (L) i 3 (P) elektronów.

Ewolucja profilu gęstości elektronowej w funckji potencjału kropki V_{QD} (L) i różnica w profilach gęstości w momencie wyłączenia oddziaływań tróji czterostanowych (P).

ACKNOWLEDGMENTS

APK, AB i JS byli wspierani przez projekt MAESTRO z Narodowego Centrum Nauki (NCN), grant nr DEC-2012/04/A/ST3/00342, a AG-G, EZ i MMM przez grant nr DEC-2013/11/B/ST3/00824.

BIBLIOGRAFIA

Condens. Matter 27, 265801 (2015).

[1] E. Zipper, M. Kurpas, M.M. Maśka, New J. Phys. 14, 093029 (2012).

[3] A. Biborski, A. P. Kądzielawa, and J. Spałek, Comp. Phys. Commun. 197, 7 (2015).

[4] T. Hahn, Comp. Phys. Commun. 176, 712 (2007). [2] M. Kurpas, B. Kędzierska, I. Janus-Zygmunt, A. Gorczyca-Goraj, E. Wach, E. Zipper, M.M. Maśka, J. Phys.:

[5] A. Biborski, A. P. Kądzielawa, A. Gorczyca-Goraj, E. Zipper, M. M. Maśka, J. Spałek, w przygotowaniu (2016).