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Quantum Metallization Tools

METHOD

We base our approach on Exact Diagonalization Ab-
Initio approach

MOTIVATION BUILDING HAMI

Our goal is to obtain general model of realistic We start from Hubbard hamiltonian with all Coulomb
quantum-mechanical system, with terms
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* modeling of phase transitions (in particular metal—-
insulator transition (MIT)).
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We start from simple, but important problem of met- e [{wz }} = (n|H"|n).

allization of hydrogen under pressure, with several (Hs),, with set of fermionic operators { AT A
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molecular systems. The microscopic parameters are defined via one— and
two-body integrals

PARALLEL COMP

As the complexity of our problem increases exponentially
we need a way to use the parallel computing.
Computations of each of "N" microscopic parameters
distributed over "M" cluster nodes. Inter-process commu-
nication via Message Passing Interface (MPI).
On each reserved node Vi, calculation loops are par-

alleled via OpenMP and computed utilizing all available
CPU cores.

OBTAINING ENE

The approach to obtaining energy of given system may Tij = <w(r)z

differ depending on its complexity. Although in pre-

sented cases we use direct diagonalization in a n-particle Viikl = <w(r)iw(r’ ) j’

Fock space, one is not bounded by this method. r
We seek for the solution in a form of o functional
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where w(r); is an orthogonal basis (see Frame Basis or-
Ea[{wga)}] = (n|H|n). thogonalization).
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For H> molecule, the ground-state can be found as
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For simplicity we use notation
i

where =; is a microscopic parameter, and O; is symbol for
all fermionic operators next to said parameter.
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SYSTEMS

We analyze hydrogen molecular systems:

BASIS ORTHOGO

The eigenvalues We start from 1s Slater-type atomic orbitals (calculations
with 2s and 2p orbitals are currently tested).

E_ = % U+ K Orthogonalization is conducted by mixing the atomic

- - orbitals with coefficients §; (expanded in terms of the

nearest neighbors (n1) 1s atomic orbitals (tight binding)),

where D = \/ (U—K)*+16(t+V)". so that new so-called Wannier functions w; (r) will satisfy

For (Hsz), systems with boundary conditions we use the orthonormality condition (w;| w;) =4d;;. B 1 J0\y3 N7
the Lanczos algorithm.

* (Hs) without periodic boundary conditions (PBC)

e linear molecular chain as (H5)3 with PBC
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RESULTS
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The energy of (H2)n chain. Note )
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. realistic results for hydrogen systems
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behavior. 3. in perspective - ab-initio phonons without doublg
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