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MOTIVATION
One of the important problems in Condensed Mat-

ter Physics are the metal-insulator transition of the Mott-
Hubbard type [1]. Our aims are to investigate:

1. quantum critical behavior of the wave function near Mott
transition;

2. evaluation of the electron wave function in the strongly
correlated system;

3. effect of the external magnetic field;

4. combination of first and second quantizations;

5. stabilizing pressure of the crystal near MIT.

As an extra, 5 can be interpreted as a metallization
pressure of atomic hydrogen.

We start with the extended Hubbard model [3] at half
filling (〈n〉 = 1):
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where δn = 1 − n, h = 1
2gµBHa is a reduced magnetic

field.

HAMILTONIAN PARAMETERS
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Figure 1 L: Microscopic parameters: hopping integral |t| and the
Hubbard interaction parameter U , both as a function ofR. Inset:
U/W ratio vs R. The U/W ratio for R = Rc is (U/W )C ' 1.18.
The vertical dashed line marks the PM → PI transition point.
In the large-R limit U reaches the atomic value Uat = (5/4)Ry.
Figure 1 R: Double occupancy probability d2 = 〈ni↑ni↓〉 ver-
sus R. Note a weak discontinuous jump to zero at R = Rc ≈
4.1a0, as compared to the continuous evolution for PM → PI

of the Gutzwiller approximation obtained previously [2].

DETAILED CHARACTERISTICS AT MIT
Calculations were performed on 96-thread node at ATOMIN Cluster at Marian Smoluchowski Institute of Physics, for SC 3D crystal (hence z = 6) for band filling factor n = 1. For

optimizing complexity STO − 3G basis (3 Gaussian per Ψi) was chosen. Alternative STO − 7G would slightly improve accuracy but the average execution time would be increased
by the factor of 30.

METHOD APPLIED
EDABI

To obtain Hamiltonian parameters we calculate integrals:

tij = 〈wi|H1 |wj〉 , (2)
U = 〈wiwi|V12 |wiwi〉 , etc., (3)

where H1 is the Hamiltonian for a single particle, and
V12 represents interparticle interaction, by approximating
Wannier orbital by the series of Gaussian functions:

wi (r) = βΨi (r)− γ
z∑
j=1

Ψj (r) , (4)

Ψi (r) =

√
α3

π
e−α|r−Ri| ≈ α 3
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(
2Γ2

a

π

) 3
4

e−Γ2
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(5)

β and γ parameters depend explicitly on the integrals of
Ψi functions and z is the number of nearest neighbors.
Parameters Ba and Γa are derived by minimizing energy
of single atom (Hamiltonian H a.u.

= − 52 − 2

|r−Ri| ). n

is a number of Gaussian functions used for the approx-
imation. Parameter α is found as a value minimizing the
ground energy.

Statistically-Consistent Gutzwiller Approximation
(SGA)

To minimize α for each considered system we have
to obtain its ground energy. It was proven [4] that
Gutzwiller Approximation not always results in finding
the lowest energy. Thus we introduce two additional
molecular fields λm and λn, coupled with m and n re-
spectively, and obtain energy of an electron as given

Ekσ = qσεk − σ (h+ λm)− (µ− λn) , (6)

with the bare dispersion relation εk and Gutzwiller co-
efficient qσ . For a purpose of minimizing energy we min-
imize functional F :

F (SGA) = − 1

β

∑
kσ

log
(

1 + e−βE
(SGA)
kσ

)
+ Λ

(
λnn+ λmm+ Ud2

)
.

(7)

GENERAL PROPERTIES
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Figure 2 T: Inverse atomic-orbital size vs. R. The critical be-
havior near R = Rc = 4.1a0. The dependence is practically
independent of the applied field. Note that the cusp has its max-
imum slightly above Rc.
Figure 2 B: Ground state energy (per atom) of the metallic state
(PM,×) for R < Rc and the insulating (PI,+) for R > Rc, as
a function of interatomic distance R. Inset: detailed represen-
tation of the first-order PM → PI transition near R = Rc ≈
4.1a0. The upper curve for R < Rc represents the energy of the
unstable PI state. Note that as EG > −1Ry, the lattice can only
be stabilized by the external pressure.
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GROUND-STATE PROPERTIES
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Figure 3 L: Magnetic moment m = 〈ni^ − ni_〉 as a function
of the applied magnetic field at the critical interatomic distance
Rc = 4.1a0. Inset: a residual uniform moment in the metallic
state vs. R near Rc, induced by the correlation field when it is
assumed as spatially uniform.
Figure 3 R: Differential static magnetic susceptibility vs. R for
selected values of the applied magnetic field. The χ divergence
at Rc = 4.1a0 accompanies the PM − PI transition and is asso-
ciated with localization of the itinerant electrons when R→ Rc.
Overall χ behavior in the metallic state does not depend much
on the value ofHa. Inset: double logarithmic plot χ(R) showing
absence of any simple exponential type of scaling.

SOLID ATOMIC HYDROGEN: THE CRITICAL PRESSURE FOR METALLIZATION

Our formulation differs from the standard treatment [5],
where the phase diagram is a function of microscopic pa-
rameter U/W , since we include a procedure of evaluating
the renormalized–by–correlations wave functions. Thus
we can calculate explicitly the critical pressure for metal-
lization.
For such a purpose we calculate pressure p as the force
F = |− 5R EG| applied to stabilize crystal over the area
A = R2 of a single cell.
One can observe the obvious discontinuity in pressure at
critical lattice parameter RC = 4.1a0 caused by the weak
(first order) metal–insulator transition (see Figs. 1R and
2B). Hence we can obtain the metallizing critical pressure
pC,I = 97.7GPa.
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Figure 4: External pressure one has to exert in order to stabilize
the crystal vs. interatomic distance (with cell area A/N = R2).
Note two critical values of pressure: pC,I = 97.7GPa required
in the insulating state and pC,M = 62.6GPa in the metallic state.
The lattice becomes very rigid as R→ Rc. The dotted line marks
naive extrapolation M → I .
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