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HAMILTONIAN
We start with the extended Hubbard model with addi-
tional term Vion–ion expressing ion–ion repulsion namely,

Ĥ =
∑
i

εin̂i +
∑
σ,i 6=j

tij ĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ (1)

+
1

2

∑
i 6=j

Kij n̂in̂j + Vion–ion,

where εi is the single-particle
energy, tij are the so-called
hopping integrals (t0 (in-
tramolecular) and t1, t2, and
t3 (intermolecular)), U is the
on-site Coulomb repulsion,
and Kij is the amplitude of
intersite Coulomb repulsion,
here taken into account for the interaction radius up to
250a in the starting atomic representation, where a is the
intermolecular distance.

MICROSCOPIC PARAMETERS
As the complexity of our problem increases exponentially,
we need a way to use the parallel computing.

Computations of each of "N" microscopic parameters
tij , Vijkl distributed over "M" cluster nodes. Inter-process
communication via Message Passing Interface (MPI).

On each reserved node Vijkl calculation loops are par-
alleled via OpenMP and computed utilizing all available
CPU cores.

MOTIVATION
Even though metallization of hydrogen was predicted

in 1935 by Wigner and Huntington [1] it is still unclear
if and under what pressure the transition occurs. As the
critical temperature for superconductivity is proportional
to M−1/2 it is possible for hydrogen to be a room temper-
ature superconductor [2].

Our goal is to model the hydrogen system in T = 0
using realistic quantum-mechanical method, with

• proper correlations picture (avoid double counting),

• modeling of phase transitions (in particular metal–
insulator transition (MIT)),

• possible inclusion of phonons in the system (both
frequencies and electron–phonon interactions),

• ab-initio combination of first– and second-
quantizatioan language.

EXACT DIAGONALIZATION AB INITIO (EDABI) APPROACH

We use the so-called Exact Diagonalization Ab Initio
(EDABI) approach, where we exactly solve the second-
quantized Hamiltonian (here in terms of iterative Lanczos
algorithm)

H =
∑
ij

∑
σ

tij ĉ
†
iσ ĉjσ +

∑
ijkl

∑
σ,σ′

Vijklĉ
†
iσ ĉ
†
jσ′ ĉlσ′ ĉkσ,

where tij and Vijkl are the microscopic parameters

Tij = 〈wi| T |wj〉 ,
Vijkl = 〈wiwj | V12 |wkwl〉 ,

build in terms of wave-functions wi, where in atomic units
T = −52 −2/|r−R|, and V = 2/|r− r′|.

We optimize our system with respect to inverse wave-
function size α, using the direct dependence of the ground-

state energy

EG

[{
w

(α)
i

}]
=
〈
n
∣∣Hα∣∣n〉.

Fig: The general scheme of EDABI method.

PARAMETERS EVALUATION
We choose the Slater 1s basis

Ψi (r) =

√
α3

π
e−α|r−Ri|,

where α is the inverse size of the orbital. Orthogonaliza-
tion is conducted by mixing the atomic orbitals with coef-
ficients βi, so that new so-called Wannier functions wi(r)
will satisfy the orthonormality condition 〈wi| wj〉 = δij .

wi (r) =

Znn∑
j=0

βjφj (r) .

Fig: Wannier function wi(r) for the (H2)n chain.
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THERMODYNAMIC POTENTIAL
As an output from EDABI method we
get the energy and system characteristics
for given structural parameters: molecu-
lar size R, intermolecular distance a, and
tilt angle θ. To study the system behavior
under pressure (for one-dimensional sys-
tem the role of “pressure” is assumed by
force f ) we are required to use enthalpy

H = EG + fa,

where a, the intermolecular distance, is
the system volume in one dimension.
Figs: System energy (L) and system en-
thalpy for arbitrary force f = 12.358nN
(R) as a function of structural parameters
a, R and θ = π/2.

TRANSITION DETAILS
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Figs: L: Intermolecular distance (unit volume) vs. pressure. Inset: Hub-
bard U to bandwidth W ratio. R: Intramolecular and intermolecular
hoppings and related averages

〈
ĉ†i ĉj

〉
, t0, C0 and t1, C1 respectively, for

both molecular and quasi-atomic phases.

At this moment we are not sure if quasi-
atomic phase is metallic. However, there
indications that the nature of the transition
might be of Mott-Hubbard type. Namely,
the unit volume (here a) changes in a discon-
tinuous manner (see left figure). Similarly,
the Hubbard U/W ratio (inset of the left fig-
ure) drops from ∼ 1.5 to ∼ 0.8 at the transi-
tion. Interestingly, the hopping probabilities
C0 and C1 change their values dramatically
form C0 ≈ 1 and C1 ≈ 0 in molecular to
C0 ∼ C1 in quasiatomic state.

MOL. �QUASIAT. TRANSITION
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Figs: L: Enthalpy versus applied force. Inset: Effective molec-
ular size Reff vs. intermolecular distance a. R: Electron den-
sity n(r) projected onto xy-plane for molecular (top) and quasi-
atomic (bottom) configuration near the transition.

Electron density defined as

n(r) =
〈

Ψ̂†(r)Ψ̂(r)
〉

=
∑
i,j,σ

w∗i (r)wj(r)
〈

ΦG

∣∣∣ ĉ†iσ ĉjσ ∣∣∣ΦG〉 ,
QUANTUM METALLIZATION TOOLS

https://bitbucket.org/azja/qmt
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