

NATIONAL SCIENCE CENTRE

20th International Conference on Magnetism Correlation-induced transition in one-dimensional molecular hydrogen crystal Andrzej P. Kądzielawa^{1†}, Andrzej Biborski², Józef Spałek^{1,2}

¹Marian Smoluchowski Institute of Physics, Jagiellonian University, ulica Łojasiewicza 11, PL-30-348 Kraków, Poland

²Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. Mickiewicza 30, PL-30-059 Kraków, Poland

[†]kadzielawa@th.if.uj.edu.pl

MOTIVATION

Even though metallization of hydrogen was predicted in 1935 by Wigner and Huntington [1] it is still unclear if and under what pressure the transition occurs. As the critical temperature for superconductivity is proportional to $M^{-1/2}$ it is possible for hydrogen to be a room temperature superconductor [2].

Our goal is to model the hydrogen system in T = 0using realistic quantum-mechanical method, with

- proper correlations picture (avoid double counting),
- modeling of phase transitions (in particular metalinsulator transition (MIT)),
- possible inclusion of phonons in the system (both on-site Coulomb repulsion.

HAMILTONIAN

We start with the extended Hubbard model with additional term $V_{\text{ion-ion}}$ expressing ion-ion repulsion namely,

$$\begin{split} \hat{\mathcal{H}} &= \sum_{i} \epsilon_{i} \hat{n}_{i} + \sum_{\sigma, i \neq j} t_{ij} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} \\ &+ \frac{1}{2} \sum_{i \neq j} K_{ij} \hat{n}_{i} \hat{n}_{j} + V_{\text{ion-ion}}, \end{split}$$

where ϵ_i is the single-particle energy, t_{ij} are the so-called hopping integrals (t_0 (intramolecular) and t_1 , t_2 , and t_3 (intermolecular)), U is the

(1)

PARAMETERS EVALUATION

We choose the Slater 1s basis

$$\Psi_{i}\left(\mathbf{r}\right) = \sqrt{\frac{\alpha^{3}}{\pi}}e^{-\alpha|\mathbf{r}-\mathbf{R}_{i}|},$$

where α is the inverse size of the orbital. Orthogonalization is conducted by mixing the atomic orbitals with coefficients β_i , so that new so-called Wannier functions $w_i(\mathbf{r})$ will satisfy the orthonormality condition $\langle w_i | w_j \rangle = \delta_{ij}$.

R= 1.43042 (a₀) a= 4 (a₀) $\theta = \pi/2$

 possible inclusion of phonons in the system (both frequencies and electron–phonon interactions), <i>ab-initio</i> combination of first– and second-quantizatioan language. 	on-site Coulomb repulsion, and K_{ij} is the amplitude of intersite Coulomb repulsion, here taken into account for the interaction radius up to 250 <i>a</i> in the starting atomic representation, where <i>a</i> is the intermolecular distance.
MICROSCOPIC PARAMETERS	EXACT DIAGONALIZATION AB INITIO (EDABI) APPROACH
As the complexity of our problem increases exponentially, we need a way to use the parallel computing. Computations of each of "N" microscopic parameters t_{ij} , V_{ijkl} distributed over "M" cluster nodes. Inter-process communication via <i>Message Passing Interface</i> (MPI). On each reserved node V_{ijkl} calculation loops are par- alleled via OpenMP and computed utilizing all available CPU cores.	We use the so-called Exact Diagonalization Ab Initio (EDABI) approach, where we exactly solve the second- quantized Hamiltonian (here in terms of iterative <i>Lanczos</i> <i>algorithm</i>) $\mathcal{H} = \sum_{ij} \sum_{\sigma} t_{ij} \hat{c}^{\dagger}_{i\sigma} \hat{c}_{j\sigma} + \sum_{ijkl} \sum_{\sigma,\sigma'} V_{ijkl} \hat{c}^{\dagger}_{i\sigma} \hat{c}^{\dagger}_{j\sigma'} \hat{c}_{l\sigma'} \hat{c}_{k\sigma},$ $\mathcal{H} = \sum_{ij} \sum_{\sigma} t_{ij} \hat{c}^{\dagger}_{i\sigma} \hat{c}_{j\sigma} + \sum_{ijkl} \sum_{\sigma,\sigma'} V_{ijkl} \hat{c}^{\dagger}_{i\sigma} \hat{c}^{\dagger}_{j\sigma'} \hat{c}_{l\sigma'} \hat{c}_{k\sigma},$ where t_{ij} and V_{ijkl} are the microscopic parameters $T_{ij} = \langle w_i \mathcal{T} w_j \rangle,$
NODE 5 NODE 6 NODE 7 NODE 7 NODE 7 NODE 7 NODE 8 NODE 7 NODE 7 NODE 8 NODE 7 NODE 7 NODE 7 NODE 7 NODE 8 NODE 7 NODE 7	$V_{ijkl} = \langle w_i w_j \mathcal{V}_{12} w_k w_l \rangle,$ build in terms of wave-functions w_i , where in atomic units $\mathcal{T} = -\nabla^2 - 2/ \mathbf{r} - \mathbf{R} ,$ and $\mathcal{V} = 2/ \mathbf{r} - \mathbf{r}' .$ We optimize our system with respect to <i>inverse wave-</i> <i>function size</i> α , using the direct dependence of the ground- function size α .

Mol. \rightarrow Quasiat. Transition

Figs: L: Enthalpy versus applied force. Inset: Effective molecular size R_{eff} vs. intermolecular distance a. R: Electron density $n(\mathbf{r})$ projected onto *xy*-plane for molecular (top) and quasiatomic (bottom) configuration near the transition. Electron density defined as

 $n(\mathbf{r}) = \left\langle \hat{\Psi}^{\dagger}(\mathbf{r}) \hat{\Psi}(\mathbf{r}) \right\rangle = \sum_{i,j} w_i^*(\mathbf{r}) w_j(\mathbf{r}) \left\langle \Phi_G \right| \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} \left| \Phi_G \right\rangle,$

THERMODYNAMIC POTENTIAL

As an output from EDABI method we get the energy and system characteristics for given structural parameters: molecular size R, intermolecular distance a, and tilt angle θ . To study the system behavior under pressure (for one-dimensional system the role of "pressure" is assumed by force *f*) we are required to use enthalpy

 $H = E_G + fa,$

where a, the intermolecular distance, is the system volume in one dimension. Figs: System energy (L) and system enthalpy for arbitrary force f = 12.358nN(**R**) as a function of structural parameters a, R and $\theta = \pi/2$.

TRANSITION DETAILS

At this moment we are not sure if quasiatomic phase is metallic. However, there indications that the nature of the transition might be of Mott-Hubbard type. Namely, the unit volume (here *a*) changes in a discontinuous manner (see left figure). Similarly, the Hubbard U/W ratio (inset of the left figure) drops from ~ 1.5 to ~ 0.8 at the transition. Interestingly, the hopping probabilities C_0 and C_1 change their values dramatically form $C_0 \approx 1$ and $C_1 \approx 0$ in molecular to $C_0 \sim C_1$ in quasiatomic state.

QUANTUM METALLIZATION TOOLS

https://bitbucket.org/azja/qmt

ACKNOWLEDGMENTS

The work was realised in the Project MAESTRO, No. DEC-2012/04/A/ST3/00342, from the National Science Center (NCN) for the years 2012-2017.

Figs: L: Intermolecular distance (unit volume) vs. pressure. Inset: Hubbard U to bandwidth W ratio. R: Intramolecular and intermolecular hoppings and related averages $\langle \hat{c}_i^{\dagger} \hat{c}_j \rangle$, t_0 , C_0 and t_1 , C_1 respectively, for both molecular and quasi-atomic phases.

REFERENCES

(2014).

[6] A. P. Kądzielawa, A. Biborski, and J. Spałek, arXiv:1506.03356 [1] E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935). [4] A. Kądzielawa, A. Bielas, M. Acquarone, A. Biborski, M. M. Maśka, and J. Spałek, New J. Phys. 16, 123022 (2014). (2015). [2] N. W. Ashcroft, Phys. Rev. Let. 21, 1748 (1968). [3] G. Mazolla, S. Yunoki and S. Sorella, Nature Comm. 5, 3487 [5] A. Biborski, A. P. Kądzielawa, and J. Spałek, arXiv:1504.00500

(2015).