First-principle approach to correlated realistic molecular hydrogen planes: Role of the Heisenberg-type interaction and the superconductivity

Andrzej P. Kądzielawa^{1,2}, Andrzej Biborski³, Józef Spałek¹

¹ Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński, Kraków, Poland
² IT4Innovations, Vysoká škola báňská - Technická univerzita Ostrava, Ostrava, Czech Republic
³ Akademickie Centrum Materiałów i Nanotechnologii, Akademia Górniczo-Hutnicza, Kraków, PL

Zakopane, September 21, 2018 🖪 🗆 א 🗇 א א 🚍 א א 🚍 א

Fundamental Aspects of Superconductivity

Zakopane, September 21, 2018 1 / 13

Outline

 Motivation Media frenzy Hydrogen under pressure

- Methods EDABI + VMC Model
- 8 Results

Transition sequence Metallicity Superconductivity

4 Conclusions

A (1) < A (1) < A (1) </p>

э

R. P. Dias, I. F. Silvera, Science 10.1126/science.aal1579 (2017)

Fundamental Aspects of Superconductivity

Zakopane, September 21, 2018 3 / 13

Hydrogen under pressure

TH: Metalic state (?)

- E. Wigner i H. B. Huntington,
- J. Chem. Phys. 3, 764 (1935):
 - H H distance (d_{HH}) ,
 - Wigner Seitz radius $(r_s \equiv (rac{3}{4\pi n})^{1/3})$

Metalization at $p \approx 25 \, GPa$: $2 \, r_s > d_{HH}$.

TH: Superconductivity in 300K (?)		
N. Ashcroft, PRL 21 , 1748 (1968)		
${\cal T}_{{\it C}}=\Theta_{{\it D}}{\cal F}({\it elph.})$		
	$ T_{C}(K)$	
Jupiter surface	$\sim 10^{-27}$	
Jupiter core	~ 290	
Jupiter surface Jupiter core	$\begin{array}{ c c }\hline T_{C} (K) \\ \hline \sim 10^{-27} \\ \hline \sim 290 \end{array}$	

Fundamental Aspects of Superconductivity

A. P. Drozdov et al., Nature 525, 73 (2015)

Zakopane, September 21, 2018 4 / 13

Exact Diagonalization Ab Initio (EDABI)++

Fundamental Aspects of Superconductivity

Zakopane, September 21, 2018 5 / 13

イロト 不得下 イヨト イヨト 二日

Model

Triangular lattice

- periodic boundary conditions in xy plane;
- Lanczos algorithm for the diagonalization core of 6 and 8 atoms (to comply with proper Néel 120° and 90° phases);
- wavefunction constructed from 10 classes of nodes
- \hookrightarrow hoppings t_{ii} up to 10^{th} neighbor; $\mathcal{H} = \sum_{i\sigma} \epsilon_i \hat{n}_{i\sigma} + \sum_{i \neq i\sigma} t_{ij} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{i\sigma}$ \hookrightarrow Coulomb repulsion K_{ii} up to 10th neighbor; $+\sum_{i}U_{i}\hat{n}_{i\uparrow}\hat{n}_{i\perp}+\sum_{i\neq i}K_{ii}\hat{n}_{i}\hat{n}_{i}$
 - $-\sum_{i\neq i} J_{ii} \mathbf{S}_i \cdot \mathbf{S}_i \frac{1}{4} \sum_{i\neq i} J_{ii} \hat{n}_i \hat{n}_i$
 - $+\sum_{i\neq i} J_{ii}\hat{c}^{\dagger}_{i\uparrow}\hat{c}^{\dagger}_{i\downarrow}\hat{c}_{i\downarrow}\hat{c}_{i\downarrow}\hat{c}_{i\uparrow}$

- \hookrightarrow ferromagnetic exchange J_{ii} up to 3rd neighbor;

3

Results

Transition sequence

2D enthalpy and lattice parameters

Fundamental Aspects of Superconductivity

Transition sequence

Atomicity

Classically

Interplanar distance $R_{eff} \rightarrow \infty \in \text{Not necessarily in the quantum realm}!$ (van-der-Waals-like behavior)

3

Results

Transition sequence

Magnetic order

Fundamental Aspects of Superconductivity

Metallicity

Two-step metallization

Metallicity of atomic phase

(top): occupancy correlation functions (bottom): Wigner-Seitz metallicity condition $r_S \equiv (\frac{3}{4\pi n})^{1/3}$

Zakopane, September 21, 2018

10 / 13

nan

Results

Metallicity

Band structure

Bare bands

- easily calculable
- \bullet depend only on $\mathcal{H}_{\mathsf{free}}$

Correlated bands

- full ${\mathcal H}$ dependence
- no generic method

Bare bands with

a correlator

- calculable
- local interaction
- Ø correlator physics

Possibility of superconducting state

Wigner-Seitz radia

$$r_{S} = r_{S}(V)$$

vol. of an electron in ph. I & II: V 1 2 - 2

$$V_{\rm e} = \frac{\rm mol}{2} \equiv \frac{1}{2} a^2 (R + \frac{z}{\zeta}),$$

vol. of an atom in atomic phase: $V_e = a^2 \frac{2}{c}$,

so u rc e	method	r _s (a ₀)
J. McMinis et al. (arXiv:1309.7051)	DMC	2.27
G. Mazzola et al. (Nat. Commun. 5, 3487 (2014))	DMC	1.28
J. L. Liet al. (Phys. Rev. B 66, 035102 (2002))	LSDA	2.78
J. L. Liet al. (Phys. Rev. B 66, 035102 (2002))	GGA	2.50
B. I. Min et al. (Phys. Rev. B 33, 324 (1986))	LMTO-LSDA	2.85
A. Svane et al. (Solid State Commun. 76, 851 (1990))	SIC-LS DA	2.45
B. G. Pfrommer et al. (Phys. Rev. B 58, 12680 (1998))	GGA-PW91	2.5
APK, AB, JS (2018)	EDA BI	1.265
R. P. Dias et al. (Science: 10.1126/science aal1579 (2017))	e kspe ry ment	1.255 - 1.34

Θ_D, mol. I - - - -

McMillana formula

Θ_D, at. 120° - - - -

Conclusions

Conclusions

Physics of hydrogen planes

- concomitant atomization & metallization;
- long-range interactions ($\sim ||\mathsf{R}||^{-p}$)
- London-like interactions in insulating molecular phases;
- benchmark for infinite-system quantum

chemistry (EDABI + OMT);

Hydrogen-induced superconductivity

- medianly correlated system (playground for a physicist)
- (most probably)^[citation needed] anharmonic phonons;
- (but maybe)^[citation needed] correlation driven;
- extreme pressure (chemical?);
- record high T_C;

Thank you for your attention

Fundamental Aspects of Superconductivity