$(H_2)_n$ molecule system with an *ab initio* optimization of wave functions in correlated state: Electron-proton couplings and intermolecular microscopic parameters

Andrzej P. Kądzielawa^{1*}, Agata Bielas², Marcello Acquarone³, Andrzej Biborski⁴, Maciej M. Maśka², Józef Spałek^{1,4}

 ¹ Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, PL-30059 Kraków, Poland
 ² Instytut Fizyki, Uniwersytet Śląski, ul. Uniwersytecka 4, PL-40007 Katowice, Poland
 ³ Dipartimento di Fisica e Scienze della Terra dell'Università di Parma, I-43100 Parma, Italy
 ⁴ Akademickie Centrum Materiałów i Nanotechnologii, AGH Akademia Górniczo-Hutnicza, AI. Mickiewicza 30, PL-30-059 Kraków, Poland

*kadzielawa@th.if.uj.edu.pl

From Spins to Cooper Pairs: New Physics of the Spins

 < □ > < □ > < □ > < Ξ > < Ξ > Ξ

 Zakopane, September 24, 2014
 1 / 13

Outline

Objective

Methods

Single-particle basis optimization Hamiltonian Statistically-consistent Gutzwiller Approximation (SGA)

3 Results

Metal-insulator transition Quantum critical behavior Metallization pressure

・ 伊ト ・ ヨト ・ ヨト

Objective

To apply SGA method for wave function quantum scaling problem near Mott-Hubbard transition.

J. Spałek, J. Kurzyk, R. Podsiadły,
W. Wójcik, Eur. Phys. J. B 74, 63-74 (2010)

Also

- to include the effect of external magnetic field on metal-insulator transition
- to calculate metallization pressure for atomic hydrogen

- 4 周 ト - 4 日 ト - 4 日 ト

Base functions

We build our basis by orthogonalizing Slater-type orbitals Ψ_i by introducing mixing coefficients β_i

$$\langle w_{\pi_i(j)}(\mathbf{r}) | w_i(\mathbf{r}) \rangle = \delta_{i\pi_i(j)},$$
 (1)

$$w_i(\mathbf{r} - \mathbf{R}_i) = w_i(\mathbf{r}) = \sum_{j=0}^{Z} \beta_j \Psi_{\pi_i(j)}(\mathbf{r}), \qquad (2)$$

where π_i is the Z-neighbors mapping function for the node *i*, where $\pi_i(0) = i$.

$$\Psi_{i}(\mathbf{r}) = \sqrt{\frac{\alpha^{3}}{\pi}} e^{-\alpha |\mathbf{r} - \mathbf{R}_{i}|} \approx \alpha^{\frac{3}{2}} \sum_{a=1}^{p} B_{a} \left(\frac{2\Gamma_{a}^{2}}{\pi}\right)^{\frac{3}{4}} e^{-\Gamma_{a}^{2} |\mathbf{r} - \mathbf{R}_{i}|^{2}}.$$
 (3)

From Spins to Cooper Pairs: New Physics of the Spins

Microscopic parameters

Values

We have two classes of microscopic parameters

$$T_{ij} = \langle w_i | \mathcal{H}_1 | w_j \rangle, \qquad (4a)$$

$$V_{ijkl} = \left\langle w_i w_j \middle| \frac{2}{|\mathbf{r} - \mathbf{r}'|} \middle| w_k w_l \right\rangle, \tag{4b}$$

As we choose w_i to be real all possibilities can be described by

From Spins to Cooper Pairs: New Physics of the Spins

< □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > ≥
Zakopane, September 24, 2014 5 / 13

Hamiltonian

We start from the extended Hubbard model:

$$\begin{aligned} \mathcal{H} &= \sum_{i} \epsilon_{i} \hat{n}_{i} + \sum_{ij\sigma} t_{ij} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{i} U_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} - \sum_{ij} J_{ij} \mathbf{S}_{i} \mathbf{S}_{j} \qquad (5) \\ &+ \frac{1}{2} \sum_{ij} \left(K_{ij} - \frac{J_{ij}}{2} \right) \hat{n}_{i} \hat{n}_{j} + \sum_{ij} J_{ij} \hat{c}_{i\uparrow}^{\dagger} \hat{c}_{i\downarrow}^{\dagger} \hat{c}_{j\downarrow} \hat{c}_{j\uparrow} \\ &+ \sum_{ij\sigma} V_{ij} \hat{n}_{i\sigma} \left(\hat{c}_{i\bar{\sigma}}^{\dagger} \hat{c}_{j\bar{\sigma}} + \hat{c}_{j\bar{\sigma}}^{\dagger} \hat{c}_{i\bar{\sigma}} \right), \end{aligned}$$

where $\hat{c}_{i\sigma}$ and $\hat{c}_{i\sigma}^{\dagger}$ are the fermionic operators of annihilation and creation of the electron with spin σ on 1s orbital of hydrogen atom $i \mod 2$ in H_2 molecule $\lfloor \frac{i}{2} \rfloor$.

SGA:

Ground-state energy

$$\frac{E_{G}}{\Lambda} = \epsilon_{a}^{eff} + \frac{1}{\Lambda} \left(\sum_{ij\sigma} t_{ij} \left\langle a_{i\sigma}^{\dagger} a_{j\sigma} \right\rangle + \sum_{i} U \left\langle a_{i\uparrow}^{\dagger} a_{i\uparrow} a_{i\downarrow}^{\dagger} a_{i\downarrow} \right\rangle \right) \quad (6)$$

$$\Downarrow \text{ minimization}$$

$$\mathcal{K} = \epsilon_{a}^{eff} \sum_{i\sigma} n_{i\sigma} + \sum_{ij\sigma} t_{ij} q_{\sigma} a_{i\sigma}^{\dagger} a_{j\sigma} + \Lambda U d^{2} - \mu \sum_{i\sigma} n_{i\sigma}$$

$$- \lambda_{m} \sum_{i} (m_{i} - m) - \lambda_{n} \sum_{i} (n_{i} - n) \quad (7)$$

n	m	d ²	λn	λ_m	μ
band		no.ofdouble	molecular field	molecular field	chemical
filling	magnetization	occupancies	coupled with n	coupled with <i>m</i>	potential

From Spins to Cooper Pairs: New Physics of the Spins

∃ 990

Nature of transition

From Spins to Cooper Pairs: New Physics of the Spins

Figure: G: Ground-state energy of metallic (blue) and insulating (red) state. D: Double occupancies per site for our model vs. last publication.

1st order

Discontinuity of first derivative of energy (upper plot) \rightarrow metal-insulator transition of weakly first order.

Zakopane, September 24, 2014 8 / 13

Zero-point motion for ion lattice

Fro

The uncertainties of momentum δP and distance between ions δR :

$$\Delta E = \frac{\left(\delta P\right)^2}{2M} + \sum_{i=1}^3 \frac{1}{2} \left(\frac{1}{R + \delta R^i} + \frac{1}{R - \delta R^i}\right) \tag{8}$$

using Heisenberg Principle $(\delta \mathbf{P})(\delta \mathbf{R}) \ge \frac{3}{4}$ and minimizing with respect to $\delta \mathbf{R}$, we obtain results (at MIT):

	axis-aligned	plane—aligned	diagonal	
$ \delta \mathbf{R} $ (a ₀)	0.3432	0.3438	0.3440	
$\Delta E - \frac{3}{R} (Ry)$	0.003455	0.003449	0.003447	

Remark 1	Remark 2	
All the calculations are done in atomic units.	This is only estimation of the magnitude of ZPM.	
	(日) (월) (문) (문) 문	50
n Spins to Cooper Pairs: New Physics of the Spins	Zakopane, September 24, 2014 9 / 13	

Metal-insulator transition

Zero-point motion

Figure: The relative magnitude of the zero-point motion energy with respect to ground state vs. lattice parameter R. Inset: The explicit value of the energy of zero-point motion vs. lattice parameter R.

From Spins to Cooper Pairs: New Physics of the Spins

Results

Quantum critical behavior

Figure:

left: reverse wave function size α (**top**), and magnetic susceptibility (**bottom**) vs. lattice parameter R, **right:** scaling of reverse wave function size α (**top**) and energy E (**bottom**) near critical point ($\sim A((R_C - R)/R_C)^{\gamma}$).

From Spins to Cooper Pairs: New Physics of the Spins

Zakopane, September 24, 2014 11 / 13

Figure: top: Ground energy vs. lattice parameter *R*, bottom: crystal stabilizing pressure vs. lattice parameter *R* numerical (orange) and naive fit (black).

Pressure stabilizing hydrogen crystal

 $p_{C} = 97.7 \, GPa$

APK, J. Spałek, K. Kurzyk, W. Wójcik, Eur. Phys. J. B **86**, 252 (2013)

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Thank you!

From Spins to Cooper Pairs: New Physics of the Spins

æ

Suplement

Microscopic parameters

Figure: **TL**: microscopic parameters vs. lattice parameter R, **TR**: effective mass enhancement vs. external magnetic field H_a , **BL**: effective magnetic field λ_m vs. lattice parameter R, **BR**: magnetization m vs. external magnetic field H_a

Table: Values calculated using SGA method as a function of lattice parameter for SC. Units, if not written explicitly, are set to be *rydbergs* (Ry). $\chi(0)$ for $R \ge R_c$ is infinite.

$R(a_0)$	E_G^{SGA}	EGA	t	U	$\alpha^{-1}(a_0)$	d ²	λ_m	$\chi(Ry^{-1})$	q^{-1}
3.25	-0.8640	-0.8644	-0.2409	1.4996	0.9474	0.152774	0.015884	0.1809	1.17728
3.50	-0.8814	-0.8816	-0.1773	1.4749	0.9220	0.120128	0.012641	2.0598	1.36818
4.00	-0.9136	-0.9136	-0.1098	1.4152	0.9200	0.048886	0.006084	22.6577	2.82781
4.05	-0.9171	-0.9171	-0.1046	1.4139	0.9175	0.038973	0.004256	47.3562	3.47235
4.09	-0.9200		-0.1005	1.4140	0.9147	0.030193	0.027281	253.7567	4.40375
4.10	-0.9209	-0.9207	-0.0995	1.4143	0.9138	0.000000	0.000000	∞	∞
4.20	-0.9315	-0.9288	-0.0896	1.4217	0.9021	0.000000	0.000000		
4.50	-0.9544	-0.9517	-0.0705	1.3742	0.9263	0.000000	0.000000		
5.00	-0.9760	-0.9732	-0.0471	1.3200	0.9556	0.000000	0.000000		
7.00	-0.9939		-0.0082	1.2504	0.9972	0.000000	0.000000		
∞	-1.0000	-1.0000	0.0000	1.2500	1.0000	0.000000	0.000000		

From Spins to Cooper Pairs: New Physics of the Spins

Zakopane, September 24, 2014 15 / 13

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Minimization of free energy functional \mathcal{F} :

$$\mathcal{F}^{(SGA)} = -\frac{1}{\beta} \sum_{\mathbf{k}\sigma} \log\left(1 + e^{-\beta E_{\mathbf{k}\sigma}^{(SGA)}}\right) + \Lambda\left(\lambda_n n + \lambda_m m + Ud^2 + \mu n\right),$$
(9)

where the test eigenvalues $E_{\mathbf{k}\sigma}^{(SGA)}$

$$E_{\mathbf{k}\sigma}^{(SGA)} \equiv q_{\sigma}\varepsilon_{\mathbf{k}} - \sigma \left(h + \lambda_{m}\right) - \left(\mu + \lambda_{n}\right),$$

$$q_{\sigma} = \frac{\left(\sqrt{\left(n_{\sigma} - d^{2}\right)\left(1 - n_{\sigma} - n_{\overline{\sigma}} + d^{2}\right)} + d\sqrt{n_{\overline{\sigma}} - d^{2}}\right)^{2}}{n_{\sigma}\left(1 - n_{\sigma}\right)}$$
(10)

From Spins to Cooper Pairs: New Physics of the Spins

Zakopane, September 24, 2014 16 / 13

"./wannier.dat" u 1:2:3

Figure: Overall space profiles of the renormalized Wannier function for sc lattice as a function of lattice parameter R and along [100] direction r.