#### Metallization of atomic solid hydrogen within the extended Hubbard model with renormalized Wannier wave functions

Andrzej P. Kądzielawa\*, Józef Spałek

Department of Condensed Matter Theory and Nanophysics Marian Smoluchowski Institute of Physics, Jagiellonian University

\*kadzielawa@th.if.uj.edu.pl

October 12, 2013



APK, JS (ZTMSiN IF UJ)

XVI National Conference on Superconductivity October 12, 2013

# Outline

## Objective

Methods

Hamiltonian Single-particle basis optimization Statistically-consistent Gutzwiller Approximation (SGA)

#### 3 Results

Metal-insulator transition Quantum critical behavior Metallization pressure

通り イヨト イヨト

- 20

#### Objective

To apply SGA method for wave function quantum scaling problem near Mott-Hubbard transition.



J. Spałek, J. Kurzyk, R. Podsiadły,
W. Wójcik, Eur. Phys. J. B **74**, 63-74 (2010)

#### Also

- to include the effect of external magnetic field on metal-insulator transition
- to calculate metallization pressure for atomic hydrogen

・ 何 ト ・ ヨ ト ・ ヨ

# Hamiltonian

We start from the extended Hubbard model:

$$\mathcal{H}_{EH} = \epsilon_{a} \sum_{i} n_{i} + \sum_{i \neq j,\sigma} t_{ij} a_{i\sigma}^{\dagger} a_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} + \sum_{i < j} K_{ij} n_{i} n_{j} + \sum_{i < j} V_{ion-ion} (\mathbf{R}_{i} - \mathbf{R}_{j}) - \sum_{i,\sigma} \sigma h n_{i\sigma},$$
(1)

where  $\epsilon_a$  is the atomic energy per site,  $t_{ij}$  the hopping integral, U the intraatomic interaction, and  $K_{ij}$  the interatomic interaction.  $V_{ion-ion} (\mathbf{R}_i - \mathbf{R}_j) = \frac{2}{|\mathbf{R}_i - \mathbf{R}_j|}$  is classical Coulomb repulsion and  $h = \frac{1}{2}g\mu_B H_a$  the reduced magnetic field.

APK, JS (ZTMSiN IF UJ)

- (個人) くほん くほん 二日

#### Hamiltonian

# Hamiltonian

We rearrange the Hamiltonian in a way

$$\mathcal{H}_{EH} = \epsilon_{a}^{eff} \sum_{i} n_{i} + \sum_{i \neq j,\sigma} t_{ij} a_{i\sigma}^{\dagger} a_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} + \frac{1}{2} \sum_{i \neq j} K_{ij} \delta n_{i} \delta n_{j} - \sum_{i,\sigma} \sigma h n_{i\sigma}, \qquad (2)$$

with effective atomic energy per site

$$\epsilon_{a}^{eff} = \epsilon_{a} + \frac{1}{2\Lambda} \sum_{i \neq j} \left( K_{ij} + \frac{2}{|R_{j} - R_{i}|} \right), \tag{3}$$

イロト 不得 とくき とくき とうき

and  $\delta n = 1 - n$ .

APK, JS (ZTMSiN IF UJ) XVI National Conference on Superconductivity October 12, 2013 5 / 15

# Microscopic parameters

#### Values

Microscopic parameters  $\epsilon_a$ ,  $t_{ij}$ , U, and  $K_{ij}$  are expressed by integrals

$$t_{ij} = \langle w_i | \mathcal{H}_1 | w_j \rangle,$$
  

$$\mathcal{K}_{ij} = \left\langle w_i w_j \middle| \frac{e^2}{|\mathbf{r}_1 - \mathbf{r}_2|} \middle| w_i w_j \right\rangle,$$
  

$$U = \mathcal{K}_{ii} = \left\langle w_i w_i \middle| \frac{e^2}{|\mathbf{r}_1 - \mathbf{r}_2|} \middle| w_i w_i \right\rangle,$$
  

$$\epsilon_a = \langle w_i | \mathcal{H}_1 | w_i \rangle.$$
(4)

APK, JS (ZTMSiN IF UJ)

A B F A B F

- 31

# Base functions

Index *i* denotes a periodic function:  $f_i(\mathbf{r}) \equiv f(\mathbf{r} - \mathbf{R}_i)$ 

$$w_{i}(\mathbf{r}) = \beta \Psi_{i}(\mathbf{r}) - \gamma \sum_{j=1}^{z} \Psi_{j}(\mathbf{r}), \qquad (5)$$

$$\Psi_{i}(\mathbf{r}) = \sqrt{\frac{\alpha^{3}}{\pi}} e^{-\alpha |\mathbf{r} - \mathbf{R}_{i}|}$$

$$\approx \alpha^{\frac{3}{2}} \sum_{a=1}^{p} B_{a} \left(\frac{2\Gamma_{a}^{2}}{\pi}\right)^{\frac{3}{4}} e^{-\Gamma_{a}^{2} |\mathbf{r} - \mathbf{R}_{i}|^{2}}.$$

$$(6)$$

| constant            | overlap      | minimization $\mathcal{H}_1 \stackrel{a.u.}{=}$             | minimization      |
|---------------------|--------------|-------------------------------------------------------------|-------------------|
|                     | dependent    | $ - \bigtriangledown^2 - 2 \mathbf{r} - \mathbf{R}_i ^{-1}$ | of E <sub>G</sub> |
| <i>z</i> , <i>p</i> | $eta,\gamma$ | $B_a, \Gamma_a$                                             | α                 |

APK, JS (ZTMSiN IF UJ)

▲□▶ ▲掃▶ ★臣▶ ★臣▶ = 臣 = の久()

# SGA:

#### Ground-state energy

$$\frac{E_{G}}{\Lambda} = \epsilon_{a}^{eff} + \frac{1}{\Lambda} \left( \sum_{ij\sigma} t_{ij} \left\langle a_{i\sigma}^{\dagger} a_{j\sigma} \right\rangle + \sum_{i} U \left\langle a_{i\uparrow}^{\dagger} a_{i\uparrow} a_{i\downarrow}^{\dagger} a_{i\downarrow} \right\rangle \right) \quad (7)$$

$$\Downarrow \text{ minimization}$$

$$\mathcal{K} = \epsilon_{a}^{eff} \sum_{i\sigma} n_{i\sigma} + \sum_{ij\sigma} t_{ij} q_{\sigma} a_{i\sigma}^{\dagger} a_{j\sigma} + \Lambda U d^{2} - \mu \sum_{i\sigma} n_{i\sigma}$$

$$- \lambda_{m} \sum_{i} (m_{i} - m) - \lambda_{n} \sum_{i} (n_{i} - n)$$
(8)

| n       | m             | d <sup>2</sup> | λn              | $\lambda_m$     | $\mu$     |
|---------|---------------|----------------|-----------------|-----------------|-----------|
| band    |               | no. of double  | molecular field | molecular field | chemical  |
| filling | magnetization | occupancies    | coupled with n  | coupled with m  | potential |

APK, JS (ZTMSiN IF UJ)

イロト イヨト イヨト イヨト

- 2

# Qualitive behavior of free energy around Mott-Hubbard Transition



# Nature of transition



Figure: G: Ground-state energy of metallic (blue) and insulating (red) state. D: Double occupancies per site for our model vs. last publication.

#### 1<sup>st</sup> order

Discontinuity of first derivative of energy (upper plot)  $\rightarrow$  metal-insulator transition of weakly first order.

APK, JS (ZTMSiN IF UJ)

#### Zero-point motion for ion lattice

The uncertainties of momentum  $\delta P$  and distance between ions  $\delta R$ :

$$\Delta E = \frac{\left(\delta P\right)^2}{2M} + \sum_{i=1}^3 \frac{1}{2} \left( \frac{1}{R + \delta R^i} + \frac{1}{R - \delta R^i} \right) \tag{9}$$

using Heisenberg Principle  $(\delta \mathbf{P})(\delta \mathbf{R}) \ge \frac{3}{4}$  and minimizing with respect to  $\delta \mathbf{R}$ , we obtain results (at MIT):

|                                         | axis–aligned | plane–aligned | diagonal |
|-----------------------------------------|--------------|---------------|----------|
| $ \delta \mathbf{R} $ (a <sub>0</sub> ) | 0.3432       | 0.3438        | 0.3440   |
| $\Delta E - \frac{3}{R} (Ry)$           | 0.003455     | 0.003449      | 0.003447 |

# Remark 1 Remark 2 All the calculations are done in atomic units. This is only estimation of the magnitude of ZPM.

APK, JS (ZTMSiN IF UJ)

### Zero-point motion



Figure: The relative magnitude of the zero-point motion energy with respect to ground state vs. lattice parameter R.

Inset: The explicit value of the energy of zero-point motion vs. lattice parameter R.

APK, JS (ZTMSiN IF UJ)

Results

Quantum critical behavior



#### Figure:

**left:** reverse wave function size  $\alpha$  (**top**), and magnetic susceptibility (**bottom**) vs. lattice parameter R, **right:** scaling of reverse wave function size  $\alpha$  (**top**) and energy E (**bottom**) near critical point ( $\sim A((R_C - R)/R_C)^{\gamma}$ ).

APK, JS (ZTMSiN IF UJ) XVI National Conference on Superconductivity October 12, 2013 13 / 15



Figure: top: Ground energy vs. lattice parameter *R*, bottom: crystal stabilizing pressure vs. lattice parameter *R* numerical (orange) and naive fit (black).

Pressure stabilizing hydrogen crystal

 $p_{C} = 97.7 \, GPa$ 

APK, J. Spałek, K. Kurzyk,W. Wójcik, Eur. Phys. J. B 86, 252 (2013)

- 同・ - ヨト - ヨ

# Thank you!



APK, JS (ZTMSiN IF UJ) XVI National Conference on Superconductivity October 12, 2013 15 / 15

Suplement

Microscopic parameters



Figure: **TL**: microscopic parameters vs. lattice parameter R, **TR**: effective mass enhancement vs. external magnetic field  $H_a$ , **BL**: effective magnetic field  $\lambda_m$  vs. lattice parameter R, **BR**: magnetization m vs. external magnetic field  $H_a$ 

APK, JS (ZTMSiN IF UJ) XVI National Conference on Superconductivity October 12, 2013

16 / 15

・ロト ・ 同ト ・ ヨト ・ ヨ

Table: Values calculated using SGA method as a function of lattice parameter for SC. Units, if not written explicitly, are set to be *rydbergs* (*Ry*).  $\chi(0)$  for  $R \ge R_c$  is infinite.

| $R(a_0)$ | $E_G^{SGA}$ | $E_G^{GA}$ | t       | U      | $\alpha^{-1}(a_0)$ | d <sup>2</sup> | $\lambda_m$ | $\chi(Ry^{-1})$ | $q^{-1}$ |
|----------|-------------|------------|---------|--------|--------------------|----------------|-------------|-----------------|----------|
| 3.25     | -0.8640     | -0.8644    | -0.2409 | 1.4996 | 0.9474             | 0.152774       | 0.015884    | 0.1809          | 1.17728  |
| 3.50     | -0.8814     | -0.8816    | -0.1773 | 1.4749 | 0.9220             | 0.120128       | 0.012641    | 2.0598          | 1.36818  |
| 4.00     | -0.9136     | -0.9136    | -0.1098 | 1.4152 | 0.9200             | 0.048886       | 0.006084    | 22.6577         | 2.82781  |
| 4.05     | -0.9171     | -0.9171    | -0.1046 | 1.4139 | 0.9175             | 0.038973       | 0.004256    | 47.3562         | 3.47235  |
| 4.09     | -0.9200     |            | -0.1005 | 1.4140 | 0.9147             | 0.030193       | 0.027281    | 253.7567        | 4.40375  |
| 4.10     | -0.9209     | -0.9207    | -0.0995 | 1.4143 | 0.9138             | 0.000000       | 0.000000    | $\infty$        | $\infty$ |
| 4.20     | -0.9315     | -0.9288    | -0.0896 | 1.4217 | 0.9021             | 0.000000       | 0.000000    |                 |          |
| 4.50     | -0.9544     | -0.9517    | -0.0705 | 1.3742 | 0.9263             | 0.000000       | 0.000000    |                 |          |
| 5.00     | -0.9760     | -0.9732    | -0.0471 | 1.3200 | 0.9556             | 0.000000       | 0.000000    |                 |          |
| 7.00     | -0.9939     |            | -0.0082 | 1.2504 | 0.9972             | 0.000000       | 0.000000    |                 |          |
| $\infty$ | -1.0000     | -1.0000    | 0.0000  | 1.2500 | 1.0000             | 0.000000       | 0.000000    |                 |          |

(ロ) (型) (目) (目) (日) (の)

Minimization of free energy functional  $\mathcal{F}$ :

$$\mathcal{F}^{(SGA)} = -\frac{1}{\beta} \sum_{\mathbf{k}\sigma} \log\left(1 + e^{-\beta E_{\mathbf{k}\sigma}^{(SGA)}}\right) + \Lambda\left(\lambda_n n + \lambda_m m + U d^2 + \mu n\right),$$
(10)

where the test eigenvalues  $E_{\mathbf{k}\sigma}^{(SGA)}$ 

$$E_{\mathbf{k}\sigma}^{(SGA)} \equiv q_{\sigma}\varepsilon_{\mathbf{k}} - \sigma \left(h + \lambda_{m}\right) - \left(\mu + \lambda_{n}\right),$$

$$q_{\sigma} = \frac{\left(\sqrt{\left(n_{\sigma} - d^{2}\right)\left(1 - n_{\sigma} - n_{\overline{\sigma}} + d^{2}\right)} + d\sqrt{n_{\overline{\sigma}} - d^{2}}\right)^{2}}{n_{\sigma}\left(1 - n_{\sigma}\right)}$$
(11)

APK, JS (ZTMSiN IF UJ)

XVI National Conference on Superconductivity October 12, 2013 18 / 15

▲□▶ ▲掃▶ ★臣▶ ★臣▶ = 臣 = の久()

"./wannier.dat" u 1:2:3



Figure: Overall space profiles of the renormalized Wannier function for sc lattice as a function of lattice parameter R and along [100] direction r.

APK, JS (ZTMSiN IF UJ) XVI National Conference on Superconductivity October 12, 2013 19 / 15

→ 3 → 4 3