Atomization of correlated molecular-hydrogen chain: A fully microscopic Variational Monte-Carlo solution

Andrzej Biborski¹, Andrzej P. Kądzielawa^{2,3,*}, Józef Spałek²

¹ Akademickie Centrum Materiałów i Nanotechnologii, Akademia Górniczo-Hutnicza, Kraków, PL ² Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński, Kraków, Poland ³ IT4 Innovations, Vysoká škola báňská - Technická univerzita Ostrava, Ostrava, Czech Republic

* andrzej.kadzielawa@uj.edu.pl

Ustroń, September 11, 2018

42nd International Conference of Theoretical Physics

Outline

- 2 Methods
 - EDABI + VMC Model Hamiltonian
- 3 2H Chain State function Structure
- Electronic properties Metallicity Correlation functions
- 6 Conclusions

• • = • • = •

3

R. P. Dias, I. F. Silvera, Science 10.1126/science.aal1579 (2017)

42nd International Conference of Theoretical Physics

Ustroń, September 11, 2018 3 / 15

Metalization of Hydrogen

Metalic state

- E. Wigner i H. B. Huntington,
- J. Chem. Phys. 3, 764 (1935):
 - H H distance (d_{HH}) ,
 - Wigner-Seitz radius $(r_s \equiv (\frac{3}{4\pi n})^{1/3})$

Metalization at $p \approx 25 \, GPa$: $2 r_s > d_{HH}$.

42nd International Conference of Theoretical Physics

Superconductor

- N. Ashcroft, PRL **21**, 1748 (1968) $T_C = \Theta_D \mathcal{F}(\lambda(r_s))$
 - ⊖_D Debye Temperature,
 - λ electron-phonon coupling.

	rs (a0)	<i>Тс</i> (К)
Jupiter surface	0.1	2e – 27
Jupiter core	0.8	283.4

en.wikipedia.org/wiki/Metallic_hydrogen Jupiter core: superconductor with $T_C \sim 300~K$?

Ustroń, September 11, 2018 4 / 15

Exact Diagonalization Ab Initio (EDABI) + VMC

Sources

♠ J. Spałek et al., Phys. Rev. B 61, 15676 (2000);
 ♠ APK et al., Eur. Phys. J. B 86, 252 (2013);
 ♦ A. Biborski, APK, J. Spałek, Comput. Phys. Commun. 197, 7 (2015);
 ♥ A. Biborski, APK, J. Spałek, Phys. Rev. B 98, 085112 (2018).

42nd International Conference of Theoretical Physics

Ustroń, September 11, 2018 5 / 15

nan

Methods

Model

For details see: Phys. Rev. B **98**, 085112 (2018)

42nd International Conference of Theoretical Physics

Assumptions

(a) two hydorgen atoms in the unit cell (α, β), with the lattice parameter a and bond length b;
(b) range of the hoppings terms extends up to 2a;
(c) interactions counted up to the range of 2a.

"Infinite" crystal

♂ Periodic Boundary

Conditions;

- 🔿 supercell of 17, 21, 25,
- 33 and 37 unit cells;

Ustroń, September 11, 2018

6 / 15

Methods

Hamiltonian

Hamiltonian

Second quantization

$$\begin{split} \mathcal{H} &= \sum_{i} \epsilon_{i} (\hat{n}_{i\uparrow} + \hat{n}_{i\downarrow}) + \sum_{i \neq j} t_{ij} (\hat{c}_{i\uparrow}^{\dagger} \hat{c}_{j\uparrow} + \hat{c}_{i\downarrow}^{\dagger} \hat{c}_{j\downarrow}) \qquad // \text{ free electrons} \\ &+ \sum_{i} U_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} + \sum_{i \neq j} K_{ij} \hat{n}_{i} \hat{n}_{j} \qquad // \text{ interactions} \end{split}$$

First-to-second-quantization calculation step

$$t_{ij} \equiv \left\langle w_i(\mathbf{r}) \middle| - \nabla^2 - \sum_{l \in \text{ions}} \frac{2Z}{|\mathbf{R}_l - \mathbf{r}|} \middle| w_j(\mathbf{r}) \right\rangle \qquad \epsilon_i \equiv t_{ii}$$

$$V_{ijkl} \equiv \left\langle w_i(\mathbf{r}) w_j(\mathbf{r}') \middle| \frac{2}{|\mathbf{r} - \mathbf{r}'|} \middle| w_k(\mathbf{r}) w_l(\mathbf{r}') \right\rangle \qquad U_i \equiv V_{iiii}, \ K_{ij} \equiv V_{ijij}$$

Dimensionality - 1D chain in 3D space

- w_i(r) build from 1s Slater orbitals;
- Coulomb potential $V_C(\mathbf{R}) \propto |\mathbf{R}|^{-1}$;

42nd International Conference of Theoretical Physics

Ustroń, September 11, 2018 7 / 15

Proper state function

One-dimensional enthalpy

$$h \equiv f \frac{a}{2} + \frac{E}{N},$$

with f as an external force (analogue of the pressure), the lattice parameter a, and ground-state energy Efor the N-particle supercell.

Run for given fImage: Opt. structureImage: Opt. wavefunctionImage: Opt. Jastrow

42nd International Conference of Theoretical Physics

Structure

Results for finite systems

Peierls-like distortion from First Principles for a correlated system

- No distortion for small systems.
- Molecular → atomic transition at high "pressure"

 \hookrightarrow see my poster after lunch.

for finite systems cf. also E. Giner et al., J. Chem. Phys. 138, 074315 (2013).

42nd International Conference of Theoretical Physics

Ustroń, September 11, 2018 9 / 15

Structure

Thermodynamic limit

Conditions of molecular-to-atomic transition for $N \to \infty$

- finite-size scaling of atomization lattice parameter $a_{dim} \approx 1.17 a_0 > 0;$
- finite-size scaling of atomization force $f_c \approx 6.02 \frac{Ry}{30} < \infty$.

42nd International Conference of Theoretical Physics

Ustroń, September 11, 2018 10 / 15

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Metallicity of hydrogen chain

Point of reference

We use the parameters of the Hamiltonian for N = 50 for the reference.

Charge gap

 $\Delta_N \equiv \left. \frac{E_{N+4}-2E_N+E_{N-4}}{4} \right|_{@h(f)} \\ E_N \text{ - the ground state of the } \\ N\text{-particle system described} \\ \text{by the reference Hamiltonian} \\ \text{with the structure minimizing} \\ \text{effective enthalpy.} \end{cases}$

Thermodynamic limit

$$\Delta \equiv \Delta_{\infty} = \lim_{N \to \infty} \Delta_N$$

Example of finite-size scaling for charge gap Δ .

Closing of the charge gap

Apparent metallicity of the hydrogen chain in the atomic phase

- charge gap closed at the MLC \rightarrow ALC transition;
- further-than-nearest neighbor hoppings;
- chain exist in 3D (both single-particle wavefunctions and Coulomb potential are taken for D = 3);

in agreement with L. Stella et al., Phys. Rev. B 84, 245117 (2011)

Density-density correlation

Density-density correlation

э

Spin-spin correlation

Spin-spin correlation

(3)

3

Conclusions

Conclusions

Hydrogen chain

- Peierls-like distortion at ambient "pressure";
- correlations do not weaken distortion;
- external force induces molecular \rightarrow atomic transition;
- concomitant atomization and metallization ;
- no long-range order;

Dziękuję za uwagę

Thank you for your attention

