Podejście z pierwszych zasad do skorelowanych molekularnych i atomowych płaszczyzn wodorowych: Rola oddziaływania wymiany i nadprzewodnictwo

Andrzej P. Kądzielawa^{1*}, Andrzej Biborski², Józef Spałek¹

¹Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński, Kraków
²Akademickie Centrum Materiałów i Nanotechnologii, Akademia Górniczo-Hutnicza, Kraków

*andrzej.kadzielawa@uj.edu.pl

Krynica Morska, 9 października 2017

Plan

Wstęp

Wodór w mediach Metalizacja - kontekst historyczny Exact Diagonalization Ab Initio (EDABI)

- 2 Układy 2D: sieć kwadratowa Model Wyniki
- 3 Układy 2D: sieć trójkątna Model Wyniki: charakterystyka Nadprzewodnictwo

4 Podsumowanie

R. P. Dias, I. F. Silvera, Science 10.1126/science.aal1579 (2017)

XVIII Krajowa Konferencja Nadprzewodnictwa

Krynica Morska, 9 października 2017 3 / 16

Wstep

Metalizacja wodoru

Stan metaliczny

- E. Wigner i H. B. Huntington,
- J. Chem. Phys. 3, 764 (1935):
 - odległość $H H(d_{HH})$,
 - promień Wignera-Seitza $(r_s \equiv (\frac{3}{4\pi n})^{1/3}).$

Metalizacja przy $p \approx 25$ GPa: $2r_s > d_{HH}.$

Stan nadprzewodzący

- N. Ashcroft, PRL **21**, 1748 (1968) $T_C = \Theta_D \mathcal{F}(\lambda(r_s))$
 - Θ_D temperatura Debye'go,
 - λ sprzężenie elektron-fonon.

	$r_s(a_0)$	$T_{C}(K)$
powierzchnia Jowisza	0.1	2×10^{-27}
jądro Jowisza	0.8	283.4

en.wikipedia.org/wiki/Metallic_hydrogen Jądro Jowisza: nadprzewodzący wodór z $T_C\sim 300~K$?

XVIII Krajowa Konferencja Nadprzewodnictwa

Metoda: Exact Diagonalization Ab Initio (EDABI)

- energia E_0 : $\mathcal{H} | \Phi_0 \rangle = E_0 | \Phi_0 \rangle$;
- *N*-cząstkowy stan podstawowy: $|\Phi_0\rangle \equiv \sum_i A_i \left| c^{\dagger}_{\pi_1(i)} c^{\dagger}_{\pi_2(i)} \cdots c^{\dagger}_{\pi_N(i)} \right\rangle$;
- zrenormalizowany operator pola: $\hat{\Psi} \Rightarrow$ obserwable

Prace źródłowe

J. Spałek et al., Phys. Rev. B 61, 15676 (2000); APK et al., Eur. Phys. J. B 86, 252 (2013); A. Biborski, APK, J. Spałek, Comput. Phys. Commun. 197, 7 (2015);

XVIII Krajowa Konferencja Nadprzewodnictwa

Krynica Morska, 9 października 2017 5 / 16

Model

Układ molekularny: sieć kwadratowa (SQ) – model

Dwuwymiarowy kryształ

- periodyczne warunki brzegowe w płaszczyźnie xy
- 8 atomów w superkomórce
- rozszerzony model Hubbarda:

$$\mathcal{H} = \sum_{i} \epsilon_{i} (\hat{n}_{i\uparrow} + \hat{n}_{i\downarrow}) + \sum_{i \neq j} t_{ij} (\hat{c}_{i\uparrow}^{\dagger} \hat{c}_{j\uparrow} + \hat{c}_{i\downarrow}^{\dagger} \hat{c}_{j\downarrow}) + \sum_{i} U_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} + \sum_{i \neq j} K_{ij} \hat{n}_{i} \hat{n}_{j}$$

- przeskoki t_{ij} do 13go sąsiada
- odpychanie kulombowskie K_{ij} do 13go sąsiada

Wyniki

Dwuetapowa atomizacja w 2D

Entalpia i optymalne parametry sieci

XVIII Krajowa Konferencja Nadprzewodnictwa

Dwuetapowa atomizacja w 2D

Gęstość prawdopodobieństwa elektronów w sieci

Wyniki

Dwuetapowa metalizacja w 2D

"Naga" relacja dyspersji i funkcje korelacji

XVIII Krajowa Konferencja Nadprzewodnictwa

Krynica Morska, 9 października 2017

9 / 16

Model

Układ molekularny: sieć trójkątna (ST) – model

- periodyczne warunki brzegowe w płaszczyźnie xy
- 6 i 8 atomów w superkomórce
- rozszerzony model Hubbarda z oddziaływaniem wymiennym i przeskokami par: $\mathcal{H} = \sum_{i} \epsilon_{i}(\hat{n}_{i\uparrow} + \hat{n}_{i\downarrow}) + \sum_{i \neq j} t_{ij}(\hat{c}^{\dagger}_{i\uparrow}\hat{c}_{i\uparrow} + \hat{c}^{\dagger}_{i\downarrow}\hat{c}_{i\downarrow}) + \sum_{i} U_{i}\hat{n}_{i\uparrow}\hat{n}_{i\downarrow} + \sum_{i \neq j} K_{ij}\hat{n}_{i}\hat{n}_{j} - \sum_{i \neq j} J_{ij}\mathbf{S}_{i} \cdot \mathbf{S}_{j} - \frac{1}{4} \sum_{i \neq j} J_{ij}\hat{n}_{i}\hat{n}_{j} + \sum_{i \neq j} J_{ij}\hat{c}^{\dagger}_{i\uparrow}\hat{c}^{\dagger}_{i\downarrow}\hat{c}_{i\downarrow}\hat{c}_{j\uparrow}$
- przeskoki t_{ij} do 10go sasiada
- odpychanie kulombowskie K_{ij} do 10go sasiada
- oddziaływanie wymiany J_{ij} do 3go sasiada

Dwuetapowa atomizacja w 2D Uwaga: Porządek Néela 90° jest niestabilny.

Entalpia i optymalne parametry sieci molecular I molecular II atomic 120° energy per molecule, Eg (Ry) -0.5 molecular 2 molecular II 120 AM PM MI -1 quasiatomic enthalpy, h (Ry) 1 -1.5 -2 -1 -2 -2.5 2 25 45 5.5 3 35 5 6 0.05 0.1 Pc2 0.15 0.2 P_{c1} intermolecular distance, a (a₀) pressure, p (Ry/a02) molecular size, R (a₀) Pytanie: Co stanowi o "atomowości" struktury, skoro R_{eff} jest skończone? 0.15 D-1 0.05 0.1 pc2 0.2 pressure, p (Rv/an2)

XVIII Krajowa Konferencja Nadprzewodnictwa

Krynica Morska, 9 października 2017 11 / 16

Warunek atomowości

Warunek "naiwny"

Odległość międzypłaszczyznowa $R_{eff} \rightarrow \infty \iff$ Nie działa ! (oczekujemy oddziaływań typu van der Waalsa)

Propozycja

$$\delta d \equiv \left(P_a \left(\uparrow\downarrow\right)^2 - P_m \left(\begin{array}{c} \uparrow\downarrow\\ \uparrow\downarrow \end{array} \right)
ight)^2 \equiv \left(d^2 - q \right)^2,$$

• $d \equiv P_a (\uparrow\downarrow)$ podwójne obsadzenie na atomie,

•
$$q \equiv P_m \begin{pmatrix} \uparrow \downarrow \\ \uparrow \downarrow \end{pmatrix}$$
 poczwórne obsadzenie na **molekule**.

Faza jest atomowa, gdy z dokładnością numeryczna $\delta d \approx 0$.

Uporządkowanie magnetyczne

Funkcje korelacji spinowej

Wnioski

- AF J_{kin} dominuje FM J
- faza molekularna I: paramagnetyk
- faza molekularna II: paramagnetyk
- faza atomowa: dwie skorelowane płaszczyzny z porz. Néela 120°

naa

Dwuetapowa metalizacja w 2D

Nowe dowody na metaliczność fazy atomowej

•
$$q \equiv P \begin{pmatrix} \uparrow \downarrow \\ \uparrow \downarrow \end{pmatrix}$$
 $d_0 \equiv P \begin{pmatrix} \uparrow \\ \downarrow \end{pmatrix}$
• $t_{\uparrow} \equiv P \begin{pmatrix} \uparrow \\ \uparrow \downarrow \end{pmatrix}$ $d_{\uparrow} \equiv P \begin{pmatrix} \uparrow \\ \uparrow \end{pmatrix}$
• $t_{\downarrow} \equiv P \begin{pmatrix} \downarrow \\ \uparrow \downarrow \end{pmatrix}$ $d_{\downarrow} \equiv P \begin{pmatrix} \downarrow \\ \downarrow \end{pmatrix}$

(góra): średnie ilościowe związane z metalizacją (dół): warunek metalizacji Wignera-Seitza oparty o

warunek metalizacji Wignera-Seitza oparty o promień $r_S \equiv \left(\frac{3}{4\pi n}\right)^{1/3}$

nan

Nadprzewodnictwo

- $r_{S} = r_{S}(V)$
 - objętość molekuły w fazie molekularnej:

$$V \equiv a^2 (R + \frac{2}{\zeta})$$

objętość dwóch atomów w fazie atomowej: $V = 2 \times a^2 \frac{2}{c}$

article	method	r _s (a ₀)
J. McMinis et al. (arXiv:1309.7051)	DMC	2.27
G. Mazzola et al. (Nat. Commun. 5, 3487 (2014))	DMC	1.28
JL. Li et al. (Phys. Rev. B 66, 035102 (2002))	LSDA	2.78
JL. Li et al. (Phys. Rev. B 66, 035102 (2002))	GGA	2.50
B. I. Min et al. (Phys. Rev. B 33, 324 (1986))	LMTO-LSDA	2.85
A. Svane et al. (Solid State Commun. 76, 851 (1990))	SIC-LSDA	2.45
B. G. Pfrommer et al. (Phys. Rev. B 58, 12680 (1998))	GGA-PW91	2.5
APK, AB, JS (Phys. Rev. B 96, 085101 (2017))	EDABI	1.265
R P Dias et al. (Science: 10.1126/science aal1570 (2017))	experiment	1.255 = 1.34

Zmodyfikowana formuła McMillana

 T_C zależy od:

- Θ_D (temperatura Debye'go),
- $\alpha \approx 1.0$.
- $\lambda^2 \equiv 0.166r_{\rm S}$.

Stosujemy przybliżenie Ashcrofta sprzężenia elektron-fonon.

Wnioski

Fizyka układów wodorowych

- jednoczesna metalizacja i atomizacja;
- niezbędne dalekozasięgowe . oddziałvwania:
- bogactwo faz niezależnie od . wymiarowości:
- wymagające metody numeryczne

Nadprzewodnictwo indukowane wodorem

- układ nie jest ani swobodny, ani silnie skorelowany;
- konieczne anharmoniczne fonony:
- nieznany mechanizm przejścia do fazy nadprzewodzacej (np. w H3S);
- wymagane ekstremalne ciśnienia;
- perspektywiczne stany metastabilne ٠ przy niskich ciśnieniach;

Dziękuję za uwagę

XVIII Krajowa Konferencja Nadprzewodnictwa

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > Krynica Morska, 9 października 2017 16 / 16