Electron-lattice coupling and superconductivity in hydrogen-rich systems

Andrzej P. Kądzielawa^{1,2}, Andrzej Biborski³, Józef Spałek¹

¹Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński, Kraków, Poland
²IT4Innovations, Vysoká škola báňská - Technická univerzita Ostrava, Ostrava, Czech Republic
³Akademickie Centrum Materiałów i Nanotechnologii, Akademia Górniczo-Hutnicza, Kraków, PL

Kraków, Dec 4, 2019

Outline

1 Motivation

- Media frenzy
- Hydrogen under pressure

2 Methods

- EDABI++
- Model

3 Results

- Transition sequence
- Metallicity

4 Superconductivity

- Eliashberg Theory
- Phonons

5 Conclusions

R. P. Dias, I. F. Silvera, Science 10.1126/science.aal1579 (2017)

:CH

The New Hork Times

SCIENCE

Hydrogen Squeezed Into a Metal, Possibly Solid, Harvard Physicists Say

By KENNETH CHANG JAN. 26, 2017

VOIRS FORUS KUNSTIG INTELLIGENS 3D-PRINT DIESELSKANDALEN KAMPFLY FOR MILLI

Metallisk hydrogen sætter forskerverdenen i koa

Påstand om fremstilling af metallisk hydrogen mødes med meget hård kritik fra forskere. Lige til skraldepanden, lyder det. Andre bakker dog de kritiserede forskere op.

Af Jens Ramskov 2, feb 2017 kl, 12:03

Прорыв в физике? Твёрдый металлический водород, возможно, стал реальностью

OX NEWS

Scientific breakthrough lost? Unique

5th Phonon Workshop

Le Scienze Mentalicervello e comportamento e epidemiologia e onde gravitazional

Idrogeno solido metallico, un annuncio e molti dubbi

volta idrogeno solido metallico, previsto per via teorica circaottant'anni fa, un traguardo che aprirebbe la strada a nuove applicazioni, dai superconduttori ai propellenti per razzi. Ma non pochi scienziati nutrono dubbi riguardo alle modalità con cui è stato svolto l'esperimento e dunque al suo risultato (red)

World's first metallic hydrogen sample disappears

Last month physicists from Harvard University in the US had claimed to have successfully turned hydrogen into a metal - something researchers had been

PTI | Posted by Bijin Jose

Superconductivity in Hydrogen

SINDEPENDENT im im ins the test in the initial

World's only piece of a metal that could revolutionise technology has disappeared, scientists reveal

U.S. scientists create metallic hydrogen, a possible superconductor, ending quest

FULL COVERAGE INDIA ELECTIONS 2017

Metaliczny wodór, materiał marzeń, stał sie rzeczywistością

Han (C)

3/14

Jane intellente firvery extendionnali ed 55 lat. Tanar weestrie stat sie fakteen. Maskewery z Debeersetete Harvarda opiosili własnie, że udało im się stworzyć metaliczny wodór, materiał o poteocialnie revoluceinech właściwościach. Na razie jego wytworzenie wymaga akrainie niekżej temperatury j olbrzymiego siśnienia, większego, niż w samym środku Ziemi, jeśli okazałby się stabilny w normalnych Kraków. Dec 4.

Hydrogen under pressure

TH: Metalic state (?)

- E. Wigner i H. B. Huntington, J. Chem. Phys. **3**, 764 (1935):
 - H H distance (d_{HH}) ,
 - Wigner-Seitz radius $(r_s \equiv (\frac{3}{4\pi n})^{1/3})$.

Metalization at $p \approx 25$ GPa: $2r_s > d_{HH}$.

TH: Superconductivity in 300K (?)

N. Ashcroft, PRL 21, 1748 (1968)

$$T_{C} = \Theta_{D} \mathcal{F}(\text{el.-ph.})$$

$$T_{C} (K)$$
Jupiter surface
$$\sim 10^{-27}$$
Jupiter core
$$\sim 290$$

Hydrogen in 2D - superconductivity?

A. P. Drozdov et al., Nature 525, 73 (2015)

Methods EDABI++

Exact Diagonalization Ab Initio (EDABI)++

Sources

 ♠ J. Spałek et al., Phys. Rev. B 61, 15676 (2000);
 ♣ APK et al., Eur. Phys. J. B 86, 252 (2013);
 ♦ A. Biborski, APK, J. Spałek, Comput. Phys. Commun. 197, 7 (2015);
 ♡ A. Biborski, APK, J. Spałek, Phys. Rev. B 98, 085112 (2018). Coming soon: EDABI for f electrons..

5th Phonon Workshop

Superconductivity in Hydrogen

Kraków, Dec 4, 2019

Triangular lattice

Two-dimensional crystal

- periodic boundary conditions in xy plane;
- Lanczos algorithm for the diagonalization core of 6 and 8 atoms (to comply with proper Néel 120° and 90° phases);

■ wavefunction constructed from 10 classes of nodes $\mathcal{H} = \sum_{i\sigma} \epsilon_i \hat{n}_{i\sigma} + \sum_{i \neq j\sigma} t_{ij} \hat{e}^{\dagger}_{i\sigma} \hat{e}_{i\sigma} \qquad \hookrightarrow \text{hoppings } t_{ij} \text{ up to } 10^{\text{th}} \text{ neighbor;} \\
+ \sum_i U_i \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} + \sum_{i \neq j} K_{ij} \hat{n}_i \hat{n}_j \qquad \hookrightarrow \text{Coulomb repulsion } K_{ij} \text{ up to } 10^{\text{th}} \text{ neighbor;} \\
- \sum_{i \neq j} J_{ij} \mathbf{s}_i \cdot \mathbf{s}_j - \frac{1}{4} \sum_{i \neq j} J_{ij} \hat{n}_i \hat{n}_j \qquad \hookrightarrow \text{ferromagnetic exchange } J_{ij} \\
+ \sum_{i \neq j} J_{ij} \hat{e}^{\dagger}_{i\uparrow} \hat{e}^{\dagger}_{i\downarrow} \hat{e}_{j\downarrow} \hat{e}_{j\uparrow} \qquad \qquad \text{up to } 3^{\text{rd}} \text{ neighbor;}$

2D enthalpy and lattice parameters

Question:

What is the quantum equivalent of $R_{\rm eff}
ightarrow \infty?$

$$\begin{split} \delta d &\equiv \left(P \left(\begin{array}{c} * \\ \uparrow \downarrow \end{array} \right) P \left(\begin{array}{c} \uparrow \downarrow \\ * \end{array} \right) - P \left(\begin{array}{c} \uparrow \downarrow \\ \uparrow \downarrow \end{array} \right) \right)^2 \\ &\equiv \left(\left\langle \Phi_0 \right| \, \hat{n}_{1\uparrow} \hat{n}_{1\downarrow} \left| \Phi_0 \right\rangle \left\langle \Phi_0 \right| \, \hat{n}_{2\uparrow} \hat{n}_{2\downarrow} \left| \Phi_0 \right\rangle \\ &- \left\langle \Phi_0 \right| \, \hat{n}_{1\uparrow} \hat{n}_{1\downarrow} \hat{n}_{2\uparrow} \hat{n}_{2\downarrow} \left| \Phi_0 \right\rangle \right)^2 \end{split}$$

Magnetic order

FM vs. AFM exchange

 $J_{\rm FM,\ Hund-like} \ll J_{\rm AFM,\ kinetic}$ Required for the ambient pressure stability of the atomic phase!

Spin correlation

- Molecular phases: molecular near spin-singlet H₂
- 2 Atomic phase: near 120° Néel order

Total spin

mol. I \rightarrow II			mol. II \rightarrow atomic		$ \mathbf{S} _{molecule} \equiv \mathbf{S}(\mathbf{x}_{2D}, -\frac{\kappa}{2}) + \mathbf{S}_{2}(\mathbf{x}_{2D}, -\frac{\kappa}{2}) $
S _{molecule}	0.10	0.14	0.16	0.54	$ \mathbf{S} _{\mathbf{triangle}} \equiv \mathbf{S}(\mathbf{x}_{2D}, \frac{R}{2}) + \mathbf{S}(\mathbf{x}_{2D} + \mathbf{e_1}, \frac{R}{2})$
S _{triangle}	0.86	0.87	0.86	0.077	$+ S(x_{2D} + e_2, \frac{R}{2}) $

Results Metallicity

Metallization I: Correlation Functions

$$\mathcal{C}_{ij} \equiv \left\langle \hat{c}_{i\sigma}^{\dagger}\hat{c}_{i\sigma}
ight
angle = \left\langle \Phi_{0} \right| \hat{c}_{i\sigma}^{\dagger}\hat{c}_{i\sigma} \left| \Phi_{0}
ight
angle_{G}$$

$$q \equiv P \begin{pmatrix} \uparrow \downarrow \\ \uparrow \downarrow \end{pmatrix} \quad d_0 \equiv P \begin{pmatrix} \uparrow \\ \downarrow \end{pmatrix}$$
$$t_{\uparrow} \equiv P \begin{pmatrix} \uparrow \\ \uparrow \downarrow \end{pmatrix} \quad d_{\uparrow} \equiv P \begin{pmatrix} \uparrow \\ \uparrow \end{pmatrix}$$
$$t_{\downarrow} \equiv P \begin{pmatrix} \downarrow \\ \uparrow \downarrow \end{pmatrix} \quad d_{\downarrow} \equiv P \begin{pmatrix} \downarrow \\ \downarrow \end{pmatrix}$$

Results Metallicity

Metallization II: Wigner-Seitz Criterion

effective pressure, $p(Ry \cdot a_0^{-2})$

 $r_S \equiv (rac{3}{4\pi n})^{1/3}$

metal $\Leftrightarrow 2r_s > d_{HH}$

Can	be	found	experim	entally!
	SOL	method	r _s (a ₀)	
Min	et al., PRE	LMTO	2.85	
Pfromme	er et al., PF	GGA-PW91	2.50	
Svan	e et al., SS	LSDA	2.45	
Li et	al. PRB 6	LSDA	2.78	
Li et	al. PRB 6	PBE	2.50	
Mazzola	et al., Nat	DMC + MD	1.28 ⁽ⁱⁱ⁾	
McMinis	s et al., arX	DMC	2.27	
AB,APK	,JS, PRB 9	EDABI	1.27	
	molea	cular II	EDABI	$1.22^{+0.17}_{-0.06}$
	ato	EDABI	1.33 ^{+0.10} -0.04	
	Dias &	experiment	1.297(43)	

1.1

Dissi Silvera⁽¹⁾ Mazzola et al.⁽¹⁾ Dissi Silvera⁽¹⁾ Mazzola et al.⁽¹⁾

Kraków, Dec 4, 2019

Metallization III: Band structure

Bare bands	Correlated bands	Bands + Correlator
 easily calculable depend only on <i>H</i>_{free} 	 full <i>H</i> dependence no generic method 	■ calculableØ correlator physics

Possibility of superconducting state

Conventional Superconductivity

Atomic hydrogen is **metallic** \Leftrightarrow **McMillan formula** for critical temperature

McMillan formula

$${\mathcal T}_{\mathcal C} = rac{\Theta_D}{1.45} \exp\left[-rac{1.04(1+\lambda)}{\lambda+\mu^*(1+0.62\lambda)}
ight]$$

- Θ_D Debye temperature (from phonon DOS)
- λ electron phonon coupling (from phononic and electronic dispersions)
- µ^{*} Morel-Anderson pseudopotential typically fitted to experimental data

We attempt to derive the ab-initio value of pseudopotential $\mu^{\ast}.$

Morel-Anderson pseudopotential

$$\mu^* = \frac{\mu}{1 + \mu \log(\frac{T_{phonons}}{T_{electrons}})}$$
$$\mu^* = \frac{n(E_F)(U - K_1)}{1 + n(E_F)(U - K_1)\log(\frac{E_F}{k_B\Theta_D})}$$

Electron - phonon coupling

Eliashberg spectral function

$$\alpha^{2} F_{\mathbf{k}}(\omega) \sim \sum_{\eta} \int d\mathbf{q} M_{\eta}^{2} \delta(\omega - \omega_{\eta}) \delta(\varepsilon(\mathbf{k}) - \varepsilon(\mathbf{k} + \mathbf{q}))$$

allows us to obtain electron-phonon coupling constant

$$\lambda = 2 \int_{\mathbf{0}}^{\infty} \frac{d\omega}{\omega} \alpha^{2} F_{\mathbf{k_{f}}}(\omega)$$

5th Phonon Workshop

Electrons and Phonons: DFT calculations with EDABI constrains

We take the Mexican-hat potential:

$$U(\{u^{i}\}) = U_{0} + \frac{1}{2} \Phi_{ij} u^{ij} + \frac{1}{4!} \Phi_{ijkl} u^{ijkl}$$

$$\mathbf{F}_i \rightarrow \mathbf{F}_i + \frac{1}{4!} \Phi_{i;j\langle kl \rangle} u^{j\langle kl \rangle}.$$

At $p_{ m eff}=0.7 Rya_0^{-2}~(\sim 1 TPa)$						
$U_{\rm eff}$ (Ry)	μ^*	λ				
1.194	0.192	1.05				
Θ_D (K)	T_{C} (K)	T_{AD} (K)				
1300	164	176				
SCAN meta-GGA + vdW corrections in DFT						
calculations						

Conclusions

Conclusions

Physics of hydrogen planes

- concomitant atomization & metallization;
- long-range interactions (~ ||R||^{-p});
- London-like interactions in insulating molecular phases (true molecular crystal);
- weak London-like attraction of atomic planes;
- benchmark for infinite-system quantum chemistry

Hydrogen-induced superconductivity

- medianly correlated system;
- anharmonic correction to force constants nesesery;
- superconductivity induced by electron-phonon coupling;
- Morel-Anderson pseudopotential from First Principles;
- high critical temperature T_C = 176K;
- extreme pressure (chemical?);

Thank you for your attention

Kraków, Dec 4, 2019 14 / 14