# Metalizacja molekularnego wodoru w dwóch wymiarach

Andrzej P. Kądzielawa<sup>1\*</sup>, Andrzej Biborski<sup>2</sup>, Józef Spałek<sup>1,2</sup>

<sup>1</sup> Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński
<sup>2</sup> Akademickie Centrum Materiałów i Nanotechnologii, Akademia Górniczo-Hutnicza



\*kadzielawa@th.if.uj.edu.pl

Kraków, 16 stycznia 2017



Seminarium ZTMSiN

**▲ □ ▶ ▲ ♂ ▶ ▲ ≥ ▶ ▲ ≥ ▶**Kraków, 16 stycznia 2017 1 / 48

## Plan



## Metalizacja wodoru



## Stan Metaliczny

E. Wigner i H. B. Huntington, J. Chem. Phys. **3**, 764 (1935)

#### Stan Nadprzewodzący

N. W. Ashcroft, Phys. Rev. Lett. **21**, 1748 (1968)

G. Mazzola, S. Yunoki and S. Sorella, Nature Communications 5, 3487, (2014)

P. Dalladay-Simpson, R.T. Howie and E.

Gregoryanz, Nature, 529, (2016) - phase V



Jądro Jowisza – potencjalnie metaliczny wodór! en.wikipedia.org/wiki/ Metallic\_hydrogen

#### Seminarium ZTMSiN

Kraków, 16 stycznia 2017 3 / 48

### Kryształy molekularne

- bazę struktury krystalicznej stanowią molekuły
- wiązania pomiędzy molekułami mają chartakter sił van der Waalsa (sił Londona)
- kryształy węglowodorowe C<sub>n</sub>H<sub>m</sub>, związki nieorganicznych np. CO<sub>2</sub>
- wodór, kryształy molekularne H<sub>2</sub>

#### Oddziaływania

# Opis układu

#### Układ

# System cząstek – elektronów i jąder atomowych – oddziaływujących ze sobą



#### Założenie

Przybliżenie Borna–Oppenheimera – całkowita f. falowa jest iloczynem elektronowej oraz jądrowej f. falowej

#### Seminarium ZTMSiN

#### Kraków, 16 stycznia 2017 5 / 48

#### Hamiltonian

Szukany jest stan podstawowy układu danego przez hamiltonian:

$$\begin{aligned} \mathcal{H} &= -\sum_{i} \nabla_{i}^{2} - \sum_{ij} \frac{2}{|\vec{r_{i}} - \vec{R_{j}}|} + \frac{1}{2} \sum_{i \neq j} \frac{2}{|\vec{r_{i}} - \vec{r_{j}}|} + \frac{1}{2} \sum_{ij} \frac{2}{|\vec{R_{i}} - \vec{R_{j}}|} \\ \mathcal{H}\Psi(\mathbf{x_{1}}, \mathbf{x_{2}}, \mathbf{x_{3}}, \dots \mathbf{x_{N}}) &= E_{G}\Psi(\mathbf{x_{1}}, \mathbf{x_{2}}, \mathbf{x_{3}}, \dots \mathbf{x_{N}}) \end{aligned}$$

 $\Psi(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,...\mathbf{x}_N)$  jest N cząstkową, zantysymetryzowaną funkcją falową.

Seminarium ZTMSiN

Kraków, 16 stycznia 2017 6 / 48

米間 とくきとくきとうき

# Wybrane metody typu ab-initio Teoria Funkcjonału Gęstości (DFT): LDA +U, GGA + U, DFT-d Dynamic Mean Field Theory + LDA (DMFT + LDA) Metoda Hartree-Focka (RHF/UHF) } f. falowa jako pojedynczy wyznacznik Slatera Conf. Inter. (CI), Coupled Cluster (CC) Exact Diagonalization Ab Initio (EDABI)

## Exact Diagonalization Ab Initio (EDABI) - krótko

EDABI to wariacyjna metoda typu *ab-initio* w której optymalizowane są jednocząstkowe f. falowe, a układ opisany jest poprzez hamiltonian dany w formalizmie II kwantyzacji, diagonalizowany przy zadanym zestawie jednocząstkowych f. falowych.

# Exact Diagonalization Ab Initio (EDABI)

## Składniki

- baza jednocząstkowa  $\{w_i^{\{\zeta(i)\}}(r)\}$  (np. LCAO)
- parametry mikroskopowe  $t_{ij}(w_i, w_j)$ ,  $V_{ijkl}(w_i, w_j, w_k, w_l)$
- hamiltonian  $\hat{H}_Nigl(igl\{t_{ij}igr\},igl\{V_{ijkl}igr\}igr)$  w  $\amalg$  kwantyzacji
- ortonormalna baza stanów N-cząstkowych  $\left\{ \left| \phi^{\mu}_{N} \right\rangle \right\}, \left| \Psi_{N} \right\rangle = \sum_{\mu} A_{\mu} \left| \phi^{\mu}_{N} \right\rangle$  $H_{\mu\nu} = \left\langle \phi_N^{\mu} \right| \hat{H}_N \left| \phi_N^{\nu} \right\rangle$



# Sformułowanie $\begin{cases} \langle w_i | \ w_j \rangle = \delta_{ij} \\ \hat{H} | \Psi_N \rangle = E_G \left( \left\{ w_i^{\{\zeta(i)\}} \right\} \right) | \Psi_N \rangle \\ \delta_{w_i} E_G \left( \left\{ w_i^{\{\zeta(i)\}} \right\} \right) = 0 \end{cases}$

3

# Exact Diagonalization Ab Initio (EDABI)



## Baza jednocząstkowa i procedura

#### Baza jednocząstkowa

Niech baza jednocząstkowych f. falowych  $w_i$  wyraża się poprzez rozwnięcie w orbitalach Slatera  $\psi_i^{\zeta}$ :

$$\left\langle w_i^{\{\zeta(i)\}}(\mathbf{r}) \middle| w_j^{\{\zeta(j)\}}(\mathbf{r}) \right\rangle = \delta_{ij},$$

$$w^{\zeta}(\mathbf{r} - \mathbf{R}_i) = w_i^{\zeta}(\mathbf{r}) = \sum_{j=0}^{Z} \sum_{\zeta} \left( \beta_j^{\zeta} \psi_{\pi_i(j)}^{\zeta}(\mathbf{r}), \right)$$

gdzie  $\pi_i$  jest funkcją mapującą Z sąsiadów węzła (atomu/jonu) *i*, oraz  $\pi_i(0) = i$ .

#### Dostępne metody

- metoda Löwdina (układy skończone)
- metoda form kwadratowych ("układy nieskończone")

#### Seminarium ZTMSiN

 < □ > < □ > < ≥ > < ≥ > ≥

 Kraków, 16 stycznia 2017
 10 / 48



・ 同 ト ・ ヨ ト ・ ヨ ト

## Hamiltonian

$$\mathcal{H} = \sum_{\sigma,i,j} t_{ij} \hat{c}^{\dagger}_{i\sigma} \hat{c}_{j\sigma} + \sum_{\substack{i,j,k,l \\ \sigma,\sigma'}} V_{ijkl} \hat{c}^{\dagger}_{i\sigma} \hat{c}^{\dagger}_{j\sigma'} \hat{c}_{l\sigma'} \hat{c}_{k\sigma} + \mathcal{H}_{ext} + \mathcal{V}_{c-c}$$

$$\{\hat{c}^{\dagger}_{i\sigma}, \hat{c}^{\dagger}_{i\bar{\sigma}}\} \equiv \{\hat{c}_{i\sigma}, \hat{c}_{i\bar{\sigma}}\} \equiv 0 \quad \text{oraz} \quad \{\hat{c}^{\dagger}_{i\sigma}, \hat{c}_{i\bar{\sigma}}\} \equiv \delta_{ij} \delta_{\sigma\bar{\sigma}},$$

## Parametry mikroskopowe

Parametry mikroskopowe jako odpowiednie całki jednocząstkowych funkcji falowych:

$$t_{ij} = \left\langle w(\mathbf{r})_i \right| - \nabla^2 - \sum_{k=1}^n \frac{2}{|\mathbf{r} - \mathbf{R}_k|} |w(\mathbf{r})_j \right\rangle$$
$$V_{ijkl} = \left\langle w(\mathbf{r})_i w(\mathbf{r}')_j \right| \frac{2}{|\mathbf{r} - \mathbf{r}'|} |w(\mathbf{r})_k w(\mathbf{r}')_l \right\rangle$$

# Exact Diagonalization Ab Initio (EDABI)



・ 同 ト ・ ヨ ト ・ ヨ ト

#### Stan N cząstkowy w II kwantyzacji

Stany bazowe w przestrzeni Focka wygodnie wybrać jako:

$$|\Phi_{k}\rangle = \prod_{i\in\Omega_{\uparrow k}} \hat{c}^{\dagger}_{i\uparrow} \prod_{j\in\Omega_{\downarrow k}} \hat{c}^{\dagger}_{j\uparrow} |0\rangle, \langle \Phi_{k}|\Phi_{l}\rangle = \delta_{kl}$$

przykładowo:

$$\Phi \rangle = \underbrace{|0, 1, \dots, 1\rangle}_{\text{spin }\uparrow} \otimes \underbrace{|1, 0, \dots, 1\rangle}_{\text{spin }\downarrow} = \hat{c}^{\dagger}_{2\uparrow} \cdots \hat{c}^{\dagger}_{N\uparrow} \hat{c}^{\dagger}_{1\downarrow} \cdots \hat{c}^{\dagger}_{N\downarrow} \left|0\right\rangle,$$

stan N cząstkowy ma więc postać:

$$\left|\Psi
ight
angle_{N}=\mathcal{N}\sum_{k}\mathcal{A}_{k}\left|\Phi_{k}
ight
angle$$

#### Spostrzeżenie

W EDABI łączymy obrazy I (parametry mikroskopowe) i II drugiej kwantyzacji (hamiltonian, stan wielocząstkowy)

#### Seminarium ZTMSiN

#### Kraków, 16 stycznia 2017 14 / 48

## Rdzeń metody

#### Procedura

**Rdzeń metody**: ponieważ hamiltonian zależy jawnie od  $\left\{ \left\{ T_{ij} \right\}, \left\{ V_{ijkl} \right\} \right\}$ , zależy on również od  $\left\{ w_i^{\zeta} \right\}$ , tak więc stan podstawowy jest odnajdowany poprzez diagonalizację hamiltonianu danego jako macierz zapisana w bazie *N*-cząstkowej przestrzeni Focka:

 $H_N = \langle \Phi_k | \mathcal{H} | \Phi_l \rangle$ 

wraz z optymalizacją ze względu na parametry wariacyjne  $\{\zeta\}$ :

$$E_{G}\left[\left\{w_{i}^{\left(\zeta\right)}\right\}\right] = \left\langle\Psi_{N}\middle|H_{N}^{\zeta}\middle|\Psi_{N}\right\rangle$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

## Procedura



900

## Stan N elektronowy

$$\begin{split} |\Psi\rangle_N &= \mathcal{N}\left(A_1 \left| \begin{array}{c} \uparrow & \uparrow \downarrow \\ \uparrow \downarrow & \downarrow \end{array} \right\rangle + A_2 \left| \begin{array}{c} \uparrow & \downarrow \\ \downarrow & \downarrow & \uparrow \downarrow \end{array} \right\rangle + \dots \right) \\ |\Psi\rangle_N &= \mathcal{N}\left(A_1 \left| 1, 1, 1, 0, 0, 0 \right\rangle \otimes \left| 0, 1, 1, 0, 0, 1 \right\rangle \\ &+ A_2 \left| 1, 0, 0, 0, 0, 1 \right\rangle \otimes \left| 0, 1, 1, 1, 0, 1 \right\rangle + \dots \right) \end{split}$$

| n  | 4 <sup>n</sup>        | N = n                  | $N = n, S_{tot}^z = 0$ |
|----|-----------------------|------------------------|------------------------|
| 2  | 16                    | 6                      | 4                      |
| 4  | 256                   | 70                     | 36                     |
| 8  | 65′536                | 12′870                 | 4′900                  |
| 18 | 68'719'476'736        | 9′075′135′300          | 2′363′904′400          |
| 32 | $1.8447	imes10^{19}$  | $0.8326	imes10^{18}$   | $0.613	imes10^{17}$    |
| 50 | $1.2677	imes10^{30}$  | $1.0089	imes10^{29}$   | $1.5980 	imes 10^{28}$ |
| 72 | $2.2301\times10^{43}$ | $1.4802 	imes 10^{42}$ | $1.9582 	imes 10^{41}$ |

Wymiar przestrzeni stanów w zależności od liczby uwzględnionych stanów jednocząstkowych 2*n* Seminarium ZTMSiN Kraków, 16 stycznia 2017 17 / 48

#### Diagonalizacia macierzy hamiltonianu

Diagonalizacja wykonywana jest metodą iteracyjną (metoda Lanczosa). Może być usprawniona poprzez wykorzystanie odpowiednich praw zachowania, jak

$$\left[\mathcal{H}, S_{tot}^{z}\right] = 0.$$

Stany bazowe można w takiej sytuacji posortować, tak aby hamiltonian miał macierz blokowo diagonalną.



Seminarium ZTMSiN

## Molekuła $H_2$

## Założenia

- uwzględniamy tylko stany elektronowe 1s\*
- diagonalizacja pełnego hamiltonianu

## Wyniki

 $\begin{array}{l} R_B = 1.43042(1.4010) \ a_0, \\ E_B = -2.2959(-2.3291) \ Ry, \\ E_{ZPM} = 0.024072(0.02) \ Ry. \\ R \to \infty \Rightarrow E \to 2E_H \end{array}$ 

## Szczegóły

APK et al. New J. Phys., Vol. 16 (2014)

Seminarium ZTMSiN



Kraków, 16 stycznia 2017 19 / 48

# Molekuła $H_2^*$

### Rozszerzenie bazy

Uwzględniamy stany: 1s,2s,2p<sub>x</sub>,2p<sub>y</sub>,2p<sub>z</sub>

#### Wyniki

 $\begin{array}{l} R_B = 1.395(1.4010) \ a_0, \\ E_B = -2.33766(-2.3291) \ Ry. \\ \mbox{Wyniki porównywalne do} \\ \ najlepszych! \\ \mbox{(Kołos, Wolniewicz, Piszczatowski)} \\ \ http://cccbdb.nist.gov/energy2.asp \end{array}$ 



・ 同 ト ・ ヨ ト ・ ヨ ト

# Superkomputer TERA-ACMiN

#### Wyposażanie

- 5 szaf typu *rack*
- 96 węzłów obliczeniowych
- 2× procesor Intel Xeon/ węzeł (8 rdzeni każdy)
- interfejs InfiniBand 4X QDR
- 16 × 2 akceleratory NVIDIA Tesla
- macierz dyskowa 288TB

http://acmin.agh.edu.pl/ index.php/pl/ aparatura-b/cen-komp

#### Moc

Całkowita teoretyczna moc obliczeniowa: 31TFlops

#### Pomysł:

Liczenie całek jest kosztowne

- zrównoleglenie?

# Superkomputer edabi - IF UJ

## Wyposażanie

- 6 węzłów obliczeniowych
- 2× procesor Intel Xeon/ węzeł (14 rdzeni każdy)
- interfejs InfiniBand 16X EDR
- macierz dyskowa 30TB

#### Moc

Całkowita teoretyczna moc obliczeniowa: 6.3TFlops

#### Pomysł:

Metaobliczenia



#### Kraków, 16 stycznia 2017 22 / 48

< 67 ▶

# Idea - zrównoleglenie dwuetapowe

#### Niezależość

Każda z całek może być liczona niezależnie - nie ma konieczności wymiany informacji(komunikacji).



- 3

## Rozwiązanie "process-pool"

Procedura minimalizacyjna (działająca w pojedynczym procesie) korzysta z rozwiązania nazywanego przez nas *process-pool*, zaimplementowanego przy pomocy *MPI* (Message Passing Interface)



## Software QMT



#### QMT

Aktualnie rozwijany jest kod pod nazwą QMT (Quantum Metallization Tools) bitbucket.org/azja/qmt

Process-pool solution for integral calculation

AB, APK, JS, Comput. Phys. Commun. (2015) **197**, 7 (2015)

Seminarium ZTMSiN

Kraków, 16 stycznia 2017

200

25 / 48

## Atomowe ZOO

Energie stanu podstawowego i jonizacji pierwszych 10 pierwiastków układu okresowego (optymalizacja orb. 1*s*, 2*s*,  $2p^x$ ,  $2p^y$  i  $2p^z$ ).

|    | $E_G$     | $E_1$  |        |                |         |        |        |        |                |        |          |
|----|-----------|--------|--------|----------------|---------|--------|--------|--------|----------------|--------|----------|
| Н  | -0.999878 | 1.000  | $E_2$  |                |         |        |        |        |                |        |          |
| He | -5.77524  | 1.776  | 4.000  | E <sub>3</sub> |         |        |        |        |                |        |          |
| Li | -14.7287  | 0.245  | 5.484  | 8.999          | E4      |        |        |        |                |        |          |
| Be | -29.165   | 0.6183 | 1.3134 | 11.2352        | 15.9981 | $E_5$  |        |        |                |        |          |
| В  | -48.928   | 0.558  | 1.652  | 2.740          | 18.981  | 24.997 | $E_6$  |        |                |        |          |
| С  | -74.9426  | 0.590  | 1.702  | 3.314          | 4.568   | 28.773 | 35.996 | E7     |                |        |          |
| Ν  | -107.852  | 0.723  | 1.868  | 3.342          | 5.426   | 7.022  | 40.477 | 48.994 | E <sub>8</sub> |        |          |
| 0  | -147.863  | 0.414  | 2.159  | 3.644          | 5.473   | 8.033  | 9.923  | 54.225 | 63.992         | $E_9$  |          |
| F  | -195.917  | 0.511  | 1.898  | 4.093          | 5.913   | 7.905  | 11.319 | 13.316 | 69.972         | 80.990 | $E_{10}$ |
| Ne | -252.657  | 0.603  | 2.154  | 3.880          | 6.520   | 8.672  | 11.199 | 14.677 | 17.245         | 87.719 | 99.988   |
|    |           |        |        |                |         |        |        |        |                |        |          |
|    |           |        |        |                |         |        |        |        |                |        |          |

Wszystkie wartości podane są w Rydbergach (Ry).

#### Seminarium ZTMSiN

## Atomowe ZOO - atomy wodoropodobne

Atomy wodoropodobne (optymalizacja orb. 1s, 2s,  $2p^x$ ,  $2p^y$  i  $2p^z$ ).

|                  | Ζ  | $\zeta_{1s} \left( a_{0}^{-1}  ight)$ | E <sub>HL</sub> (Ry) |
|------------------|----|---------------------------------------|----------------------|
| Н                | 1  | 1.00802                               | -0.999878            |
| $He^{1+}$        | 2  | 1.99596                               | -3.9995              |
| Li <sup>2+</sup> | 3  | 3.02355                               | -8.9989              |
| Be <sup>3+</sup> | 4  | 4.0038                                | -15.9981             |
| B <sup>4+</sup>  | 5  | 5.04009                               | -24.997              |
| C <sup>5+</sup>  | 6  | 6.0057                                | -35.9957             |
| N <sup>6+</sup>  | 7  | 7.00665                               | -48.9941             |
| 07+              | 8  | 8.0076                                | -63.9923             |
| F <sup>8+</sup>  | 9  | 9.00855                               | -80.9903             |
| Ne <sup>9+</sup> | 10 | 10.0095                               | -99.988              |

Seminarium ZTMSiN

Kraków, 16 stycznia 2017 27 / 48

< A

ъ

## Dwuwymiarowy układ molekularny - model



- periodyczne warunki brzegowe w płaszczyźnie xy
- 8 atomów w superkomórce
- hoppingi do 13go sasiada
- odpychanie kulombowskie K<sub>ij</sub> do 13go sasiada

#### Model

## Funkcja stanu



#### Uogólniona entropia w pobliżu przejścia MI

# Entalpia 2*d* Uogólnione ciśnienie $p \Leftrightarrow p_{2D} (Rya_0^{-2})$ $H/mol \equiv$ $E_G/mol + p_{2D}a^2/2$ $p_{2D}^c = 0.166(Rya_0^{-2})$



< 17 ▶

Э.

Entalpia

## Entalpia



## Odległość międzymolekularna



# Rozmiar molekuły



# Efektywny promień Bohra



# Efektywna funkcja falowa w fazie molekularnej w pobliżu przejścia



#### Seminarium ZTMSiN

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Efektywna funkcja falowa w fazie kwaziatomowej w pobliżu przejścia



#### Seminarium ZTMSiN

Kraków, 16 stycznia 2017 35 / 48

< 67 ▶

## Efektywne funkcje falowe wzdłóż węzłów na osi x



#### Natura przejścia

## Funkcje korelacji



Natura przejścia

## Relacja dyspersji - stan molekularny (II)



Natura przejścia

Relacja dyspersji - stan molekularny (II)



Natura przejścia

## Relacja dyspersji - stan kwaziatomowy



920

Natura przejścia

## Relacja dyspersji - stan kwaziatomowy



Natura przejścia

## Kryterium Hubbarda - szerokość pasma



Natura przejścia

# Kryterium Hubbarda - U/W



NΟ

Natura przejścia

## Kryterium Hubbarda - U - W



## Porównanie kryterium Hubbarda i Motta

## Kryterium Hubbarda

$$\frac{U}{W_{c,mol}} = 1.296 \rightarrow \frac{U}{W_{c,atom}} = 0.629$$

## Kryterium Motta

$$a_B N_c^{1/2}|_{c,mol} = \frac{1}{\zeta_{c,mol}a_{c,mol}} = 0.410$$
$$a_B N_c^{1/2}|_{c,atom} = \frac{1}{\zeta_{c,atom}a_{c,atom}} = 0.327$$

Seminarium ZTMSiN

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ Kraków, 16 stycznia 2017 45 / 48

э

Natura przejścia

## Transition



Seminarium ZTMSiN

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > 
 Kraków, 16 stycznia 2017
 46 / 48

## Podsumowanie

### Metoda EDABI

- I + II kwantyzacja
- uniwersalność diagonalizacji

#### Układy wodorowe

- weryfikacja (H<sub>2</sub>)
- przejścia fazowe typu Motta

## Wiele do zrobienia

- spektrum fononowe
- druga kwantyzacja dla nieortonormalnych baz
- układy trójwymiarowe
- nadprzewodnictwo
- układy z innymi pierwiastkami

## Perspektywy

- Rozwijanie QMT
- Quantum Monte-Carlo (VMC)
- EDABI + DE-GWF (dr inż. Michał Zegrodnik)

# Dziękuję za uwagę!



| Kraków, 1 | 6 stycznia | 2017 | 48 / 48 |
|-----------|------------|------|---------|
|           |            |      | · · ·   |

イロト イロト イヨト イヨト 二日

Seminarium ZTMSiN