Ab initio methods in Mott transition - application to metallization of atomic hydrogen

Andrzej Kądzielawa

Department of Condensed Matter Theory and Nanophysics Institute of Physics, Jagiellonian University

kadzielawa@th.if.uj.edu.pl

June 3, 2013

EUROPEAN REGIONAL DEVELOPMENT FUND

2 Methods

- Hamiltonian
- Single-particle basis optimization
- Statistically-consistent Gutzwiller Approximation (SGA)

3 Results

- Transition
- Microscopic parameters
- Results properties: quantum critical behavior
- Metallization pressure

4 Future

Aim 1

To apply SGA method for wave function quantum scaling problem near Mott-Hubbard transition.

For GA: Eur. Phys. J. B 74, 63-74 (2010)

Other

- include the effect of external magnetic field on metal-insulator transition
- calculate metallization pressure for atomic hydrogen

Andrzej Kądzielawa (ZTMSiN - IF UJ) Ab initio methods in Mott transition - ap

Hamiltonian

We start from the Extended Hubbard Model:

$$\mathcal{H}_{EH} = \epsilon_{a}^{eff} \sum_{i} n_{i} + \sum_{i \neq j,\sigma} t_{ij} a_{i\sigma}^{\dagger} a_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} + \frac{1}{2} \sum_{i \neq j} \mathcal{K}_{ij} \delta n_{i} \delta n_{j}, \quad (1)$$

where effective energy

$$\epsilon_{a}^{eff} = \epsilon_{a} + \frac{1}{2\Lambda} \sum_{i \neq j} \left(\mathcal{K}_{ij} + \frac{2}{|R_{j} - R_{i}|} \right), \tag{2}$$

 t_{ij} – hopping integral, U – Coulomb interaction on site, a K_{ij} Coulomb interaction between site

External field H_a

Zeeman term:

$$\mathcal{H}_{Z}=-\sum_{i,\sigma}\sigma hn_{i\sigma},$$

where $h = \frac{1}{2}g\mu_B H_a$ is reduced magnetic field.

(3)

Single-particle basis optimization

Figure: Flow chart from Dr. J. Kurzyk PhD thesis (UJ 2010)

June 3, 2013 6 / 20

On site $i = R_i$:

$$w_{i}(\vec{r}) = \beta \Psi_{i}(\vec{r}) - \gamma \sum_{j=1}^{z} \Psi_{j}(\vec{r}),$$

$$\Psi_{i}(\vec{r}) = \sqrt{\frac{\alpha^{3}}{\pi}} e^{-\alpha |\vec{r} - \vec{R}_{i}|}$$

$$\approx \alpha^{\frac{3}{2}} \sum_{a=1}^{p} B_{a} \left(\frac{2\Gamma_{a}^{2}}{\pi}\right)^{\frac{3}{4}} e^{-\Gamma_{a}^{2} |\vec{r} - \vec{R}_{i}|^{2}}.$$

constant	overlap	minimization $\mathcal{H}_1 \stackrel{a.u.}{=}$	minimization	
	dependent	$\left - \nabla^2 - 2 \right \vec{r} - \vec{R}_i \right ^{-1}$	with respect to E_G	
<i>z</i> , <i>p</i>	eta,γ	B_a, Γ_a	α	

(4)

Values

Microscopic parameters ϵ_a , t_{ij} , U, and K_{ij} are expressed by integrals

$$t_{ij} = \langle w_i | \mathcal{H}_1 | w_j \rangle,$$

$$U = \left\langle w_i w_i \middle| \frac{e^2}{|\vec{r}_1 - \vec{r}_2|} \middle| w_i w_i \right\rangle,$$

$$K_{ij} = \left\langle w_i w_j \middle| \frac{e^2}{|\vec{r}_1 - \vec{r}_2|} \middle| w_i w_j \right\rangle,$$

$$\epsilon_a = \langle w_i | \mathcal{H}_1 | w_i \rangle.$$
(5)

Figure: L: Wannier function in the direction of one of the lattice axis vs. lattice parameter R, P: SC structure

Minimization of free energy functional \mathcal{F} :

$$\mathcal{F}^{(SGA)} = -\frac{1}{\beta} \sum_{\vec{k}\sigma} \log\left(1 + e^{-\beta E_{\vec{k}\sigma}^{(SGA)}}\right) + \Lambda \left(\lambda_n n + \lambda_m m + U d^2 + \mu n\right),$$
(6)

where test eigenvalues $E_{\vec{k}\sigma}^{(SGA)}$

$$E_{\vec{k}\sigma}^{(SGA)} \equiv q_{\sigma}\varepsilon_{\vec{k}} - \sigma \left(h + \lambda_{m}\right) - \left(\mu + \lambda_{n}\right),$$

$$q_{\sigma} = \frac{\left(\sqrt{\left(n_{\sigma} - d^{2}\right)\left(1 - n_{\sigma} - n_{\overline{\sigma}} + d^{2}\right)} + d\sqrt{n_{\overline{\sigma}} - d^{2}}\right)^{2}}{n_{\sigma}\left(1 - n_{\sigma}\right)}$$
(7)

β	n	m	d	λ_n	λ_m	μ
$\frac{1}{k_B T}$	occup.	magne–	num. doub.	mol. field	mol. field	chem.
	density	tization	occupancy	con. w. <i>n</i>	con. w. <i>m</i>	pot.

Ground energy

$$\frac{E_{G}}{\Lambda} = \epsilon_{a}^{eff} + \frac{1}{\Lambda} \left(\sum_{ij\sigma} t_{ij} \left\langle a_{i\sigma}^{\dagger} a_{j\sigma} \right\rangle + \sum_{i} U \left\langle a_{i\uparrow}^{\dagger} a_{i\uparrow} a_{i\downarrow}^{\dagger} a_{i\downarrow} \right\rangle \right) \quad (8)$$

$$\Downarrow \text{ minimization}$$

$$\mathcal{K} = \epsilon_{a}^{eff} \sum_{i\sigma} n_{i\sigma} + \sum_{ij\sigma} t_{ij} q_{\sigma} a_{i\sigma}^{\dagger} a_{j\sigma} + \Lambda U d^{2} - \mu \sum_{i\sigma} n_{i\sigma}$$

$$- \lambda_{m} \sum_{i} (m_{i} - m) - \lambda_{n} \sum_{i} (n_{i} - n)$$
(9)

Remark

No Zero Point Motion of protons.

Andrzej Kądzielawa (ZTMSiN - IF UJ) Ab initio methods in Mott transition - ap

Type of transition

Figure: **G**: Ground energy of metallic (blue) and insulating (red) state. **D**: Double occupancies per site for our model vs. last publication.

l order

Discontinuity of first derivative of energy (upper plot) \rightarrow metal - insulator transition of weakly first order.

Zero Point Motion for ion chain

The uncertainties of momentum δP and distance between ions δR :

$$\Delta E = \frac{(\delta P)^2}{2M} + \frac{1}{2} \left(\frac{e^2}{R + \delta R} + \frac{e^2}{R - \delta R} \right) \stackrel{\delta R \ll R}{=} \frac{(\delta P)^2}{2M} + \frac{e^2}{R} + 2\frac{e^2}{R} \left(\frac{\delta R}{R} \right)^2 \tag{10}$$

using Heisenberg Principle $(\delta P)(\delta R) \ge \frac{3}{4}\hbar^2$ and minimizing with respect to δR

$$\delta R = \left(\frac{3\hbar^2 R^3}{8Me^2}\right)^{\frac{1}{4}}$$

$$\Delta E = \frac{e^2}{R} + \hbar \left(\frac{6e^2}{MR^3}\right)^{\frac{1}{2}}$$
(11)

Figure: **GL**: microscopic parameters vs. lattice parameter R, **GP**: effective magnetic field λ_m vs. lattice parameter R, **DL**: magnetic susceptibility vs. lattice parameter R, **DP**: magnetization m vs. external magnetic field H_a

Figure: **GL**: reverse wave function size α vs. lattice parameter *R*, **GP**: effective mass enhancement vs. external magnetic field H_a , **D**: scaling of reverse wave function size $\alpha(\mathbf{L})$ and energy $E(\mathbf{P})$ near critical point.

Figure: G: Ground energy vs. lattice parameter R, D: crystal stabilizing pressure vs. lattice parameter R - numerical (orange), naive approach with no phase transition (czarny).

Pressure stabilizing hydrogen crystal

 $p_C = 97.7 \, GPa$

Remark

To do: bulk modulus $\kappa = -\frac{1}{V} \frac{dV}{dp}$.

Modification 1

More realistic crystal structures:

- fcc
- hcp (antiferromagnetism ?)

Modification 2

Metal-insulator transition for molecular hydrogen

Phononic part

$$\mathcal{H}_{ph} = \hbar\Omega_d \left(d^{\dagger}d + \frac{1}{2} \right) + \hbar\Omega_e \left(e^{\dagger}e + \frac{1}{2} \right)$$
(12)

Holstein term

$$\mathcal{H}_{H} = \hbar \Omega_{d} \xi \sum_{\sigma} \left(c_{1\sigma}^{\dagger} c_{1\sigma} - c_{2\sigma}^{\dagger} c_{2\sigma} \right) \left(d^{\dagger} + d \right)$$
(13)

Su-Schrieffer-Heeger term

$$\mathcal{H}_{SSH} = \hbar \Omega_{e} \zeta \sum_{\sigma} \left(c_{1\sigma}^{\dagger} c_{2\sigma} + c_{2\sigma}^{\dagger} c_{1\sigma} \right) \left(e^{\dagger} + e \right)$$
(14)

Bibliography

J. Kurzyk, W. Wójcik, J. Spałek

Extended Hubbard model with renormalized Wannier wave functions in the correlated state: beyond the parametrized models.

Eur. Phys. J. B 66, 385-398 (2008).

J. Spałek, J. Kurzyk, R. Podsiadły, W. Wóicik

Extended Hubbard model with the renormalized Wannier wave functions in the correlated state II: quantum critical scaling of the wave function near the Mott-Hubbard transition. Eur. Phys. J. B 74, 63-74 (2010).

1

APK, J. Spałek, J. Kurzyk, W. Wójcik

Extended Hubbard model with renormalized Wannier wave functions in the correlated state III: Statistically consistent Gutzwiller approximation and the metallization of atomic solid hydrogen, Eur. Phys. J. B 86, 252 (2013).

J. Jedrak, J. Kaczmarczyk, J. Spałek

Statistically-consistent Gutzwiller approach and its equivalence with the mean-field slave-boson method for correlated systems, arXiv:cond-mat/1008.0021v2 (2010).

M. Acquarone, J. R. Iglesias, M. A. Gusmão, C. Noce, A. Romano,

Electronic and phononic states of the Holstein-Hubbard dimer of variable length. Phys. Rev. B 58, 7626 (1998).

M. Acquarone and C. Noce.

Distance-depending electron-phonon interactions from one- and two-body electronic terms in a dimer,

Int. J. Mod. Phys. B 14, 2962 (2000)

Table: Values calculated using SGA method as a function of lattice parameter for SC. Units, if not written explicitly, are set to be *rydbergs* (*Ry*). $\chi(0)$ for $R \ge R_c$ is infinite.

$R(a_0)$	E_G^{SGA}	E_G^{GA}	t	U	$\alpha^{-1}(a_0)$	d²	λ_m	$\chi(Ry^{-1})$	q^{-1}
3.25	-0.8640	-0.8644	-0.2409	1.4996	0.9474	0.152774	0.015884	0.1809	1.17728
3.50	-0.8814	-0.8816	-0.1773	1.4749	0.9220	0.120128	0.012641	2.0598	1.36818
4.00	-0.9136	-0.9136	-0.1098	1.4152	0.9200	0.048886	0.006084	22.6577	2.82781
4.05	-0.9171	-0.9171	-0.1046	1.4139	0.9175	0.038973	0.004256	47.3562	3.47235
4.09	-0.9200		-0.1005	1.4140	0.9147	0.030193	0.027281	253.7567	4.40375
4.10	-0.9209	-0.9207	-0.0995	1.4143	0.9138	0.000000	0.000000	∞	∞
4.20	-0.9315	-0.9288	-0.0896	1.4217	0.9021	0.000000	0.000000		
4.50	-0.9544	-0.9517	-0.0705	1.3742	0.9263	0.000000	0.000000		
5.00	-0.9760	-0.9732	-0.0471	1.3200	0.9556	0.000000	0.000000		
7.00	-0.9939		-0.0082	1.2504	0.9972	0.000000	0.000000		
∞	-1.0000	-1.0000	0.0000	1.2500	1.0000	0.000000	0.000000		