Andrzej P. Kądzielawa^{1*}, Andrzej Biborski², Józef Spałek^{1,2}

¹ Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński
² Akademickie Centrum Materiałów i Nanotechnologii, Akademia Górniczo-Hutnicza

*kadzielawa@th.if.uj.edu.pl

Katowice, 12 Czerwca 2015

Przejście molekularny → atomowy wodór

Katowice, 12 Czerwca 2015 1 / 43

Plan

1 Wstęp	
Izolatory Motta	
Kryształy Molekularne i Układy N	lolekuł
Układy wodorowe – metalizacja	
2 Modelowanie	
Oddziaływania	
Dostępne metody	
Exact Diagonalization Ab Initio (I	EDABI)
Obliczenia numeryczne	
Dostępne składowe modelowania	
3 Łańcuch molekularny $(H_2)_n$	
Model	
Wyniki	
4 Skalowanie i analiza wydajnościowa	
Analiza zbieżności	
Prawo Amdahla	
Wydajność rozwiązania Process-P	00
Efektywne przyspieszenie	
5 Podsumowanie	(日) (個) (登) (登) [
Przejście molekularny $ ightarrow$ atomowy wodór	Katowice, 12 Czerwca 2015 2 / 43

Wstęp

Izolatory Motta

- tlenki metali przejściowych
- izolator vs przewodnik doświadczenie vs teorie pasmowe
- model uśrednionego oddziaływania niepoprawny (Mott & Peierls 1937)
- konieczność jawnego uwzględnienia oddziaływania elektron–elektron

Kryształy Molekularne

- bazę struktury krystalicznej stanowią molekuły
- wiązania pomiędzy molekułami mają chartakter sił van der Waalsa (sił Londona)
- kryształy gazów szlachetnych, związków nieorganicznych np. CO₂
- wodór, kryształy molekularne H₂

Metalizacja wodoru

Stan metaliczny wodoru przewidywany jest w ekstremalnie wysokich ciśnieniach (Wigner & Huntington 1935). W fazie tej przewiduje się istnienie stanu nadprzewodzącego w temperaturach pokojowych (Ashcroft). Diagram fazowy p-T nie jest jednak w pełni znany ze względu na brak ewidencji eksperymentalnej a wyniki badań teoretycznych są często ze sobą sprzeczne.

Oddziaływania

Opis układu

Układ

System cząstek – elektronów i jąder atomowych – oddziaływujących ze sobą

Założenie

Przybliżenie Borna–Oppenheimera – całkowita f. falowa jest iloczynem elektronowej oraz jądrowej f. falowej

 $\mathsf{Przejście}\ \mathsf{molekularny}\ o\ \mathsf{atomowy}\ \mathsf{wodór}$

Katowice, 12 Czerwca 2015 5 / 43

Hamiltonian

Szukany jest stan podstawowy układu danego poprzez hamiltonian:

$$\begin{aligned} \mathcal{H} &= -\sum_{i} \nabla_{i}^{2} - \sum_{ij} \frac{2}{|\vec{r}_{i} - \vec{R}_{j}|} + \frac{1}{2} \sum_{i \neq j} \frac{2}{|\vec{r}_{i} - \vec{r}_{j}|} + \frac{1}{2} \sum_{ij} \frac{2}{|\vec{R}_{i} - \vec{R}_{j}|} \\ \mathcal{H}\Psi(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \dots \mathbf{x}_{N}) &= E_{G}\Psi(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \dots \mathbf{x}_{N}) \end{aligned}$$

 $\Psi(\mathbf{x_1},\mathbf{x_2},\mathbf{x_3},...\mathbf{x_N})$ jest N cząstkową, zantysymetryzowaną funkcją falową

★課 と ★ 臣 と ★ 臣 と 二 臣

Exact Diagonalization Ab Initio (EDABI) - krótko

EDABI to wariacyjna metoda typu *ab-initio* w której optymalizowane są jednocząstkowe, zlokalizowane funkcje falowe a układ opisany jest poprzez Hamiltonian dany w formalizmie II kwantyzacji (w reprezentacji liczby obsadzeń).

- 4 同 6 4 日 6 4 日 6

Exact Diagonalization Ab Initio (EDABI)

・ 何 ト ・ ヨ ト ・ ヨ ト

Exact Diagonalization Ab Initio (EDABI)

- 同・ - ヨト - ヨ

Baza jednocząstkowa i procedura

Baza jednocząstkowa

Niech baza jednocząstkowych f. falowych w; wyraża się poprzez rozwnięcie w orbitalach Slatera ψ_i^{α} :

$$\left\langle w_{\pi_{i}(j)}^{\alpha}(\mathbf{r}) \middle| w_{i}^{\alpha'}(\mathbf{r}) \right\rangle = \delta_{i\pi_{i}(j)}\delta_{\alpha\alpha'},$$

$$w^{\alpha}(\mathbf{r} - \mathbf{R}_{i}) = w_{i}^{\alpha}(\mathbf{r}) = \sum_{j=0}^{Z} \sum_{\breve{\alpha}} \left\langle \beta_{j}^{\breve{\alpha}} \psi_{\pi_{i}(j)}^{\breve{\alpha}}(\mathbf{r}) \right\rangle,$$

gdzie π_i jest funkcją mapującą Z sąsiadów węzła (atomu/jonu) *i*, oraz $\pi_i(0) = i$.

Dostępne metody

- metoda Löwdina (układy skończone)
- metoda form kwadratowych (układy nieskończone)

Przejście molekularny → atomowy wodór

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ Katowice, 12 Czerwca 2015 10 / 43

э

Exact Diagonalization Ab Initio (EDABI)

Hamiltonian

$$\mathcal{H} = \sum_{\sigma,i,j} t_{ij} \hat{c}^{\dagger}_{i\sigma} \hat{c}_{j\sigma} + \sum_{\substack{i,j,k,l \\ \sigma,\sigma'}} V_{ijkl} \hat{c}^{\dagger}_{i\sigma} \hat{c}^{\dagger}_{j\sigma}, \hat{c}_{l\sigma}, \hat{c}_{k\sigma} + \mathcal{H}_{ext} + \mathcal{V}_{c-c}$$
$$\{ \hat{c}^{\dagger}_{i\sigma}, \hat{c}^{\dagger}_{i\bar{\sigma}} \} \equiv \{ \hat{c}_{i\sigma}, \hat{c}_{j\bar{\sigma}} \} \equiv 0 \quad \text{oraz} \quad \{ \hat{c}^{\dagger}_{i\sigma}, \hat{c}_{j\bar{\sigma}} \} \equiv \delta_{ij} \delta_{\sigma\bar{\sigma}},$$

Parametry mikroskopowe

Parametry mikroskopowe jako odpowiednie całki jednocząstkowych zlokalizowanych funkcji falowych:

$$t_{ij} = \left\langle w(\mathbf{r})_i \right| - \nabla^2 - \sum_{k=1}^n \frac{2}{|\mathbf{r} - \mathbf{R}_k|} |w(\mathbf{r})_j \right\rangle$$
$$V_{ijkl} = \left\langle w(\mathbf{r})_i w(\mathbf{r}')_j \right| \frac{2}{|\mathbf{r} - \mathbf{r}'|} |w(\mathbf{r}')_k w(\mathbf{r})_l \right\rangle$$

Przejście molekularny → atomowy wodór

Exact Diagonalization Ab Initio (EDABI)

Stan N cząstkowy w II kwantyzacji

Stany bazowe w przestrzeni Focka wygodnie wybrać jako:

$$|\Phi_{k}\rangle = \prod_{i\in\Omega_{\uparrow k}} \hat{c}^{\dagger}_{i\uparrow} \prod_{j\in\Omega_{\downarrow k}} \hat{c}^{\dagger}_{j\uparrow} |0\rangle, \langle \Phi_{k}|\Phi_{l}\rangle = \delta_{kl}$$

przykładowo:

$$|\Phi\rangle = \underbrace{|0, 1, \dots, 1\rangle}_{\mathsf{spin}\uparrow} \otimes \underbrace{|1, 0, \dots, 1\rangle}_{\mathsf{spin}\downarrow} = \hat{c}^{\dagger}_{2\uparrow} \cdots \hat{c}^{\dagger}_{N\uparrow} \hat{c}^{\dagger}_{1\downarrow} \cdots \hat{c}^{\dagger}_{N\downarrow} |0\rangle \,,$$

stan N cząstkowy ma więc postać:

$$|\Psi
angle_{N}=\mathcal{N}\sum_{k}A_{k}\left|\Phi_{k}
ight
angle$$

 $\mathsf{Przejście} \ \mathsf{molekularny} \to \mathsf{atomowy} \ \mathsf{wodór}$

Katowice, 12 Czerwca 2015 14 / 43

・ 何 ト ・ ヨ ト ・ ヨ ト

Procedura

Rdzeń metody: ponieważ hamiltonian zależy jawnie od $\{\{T_{ij}\}, \{V_{ijkl}\}\}\$, zależy on również od $\{w_i^{\alpha}\}$, tak więc stan podstawowy jest odnajdowany poprzez diagonalizację hamiltonianu danego jako macierz zapisana w bazie *N*-cząstkowej przestrzeni Focka:

 $H_N = \langle \Phi_k | \mathcal{H} | \Phi_I \rangle$

wraz z optymalizacją ze względu na parametry wariacyjne $\{\alpha\}$:

$$E_G\Big[\big\{w_i^{(\alpha)}\big\}\Big] = \big\langle \Psi_N\big|H_N^{\alpha}\big|\Psi_N\big\rangle$$

 $\mathsf{Przejście} \ \mathsf{molekularny} \rightarrow \mathsf{atomowy} \ \mathsf{wodór}$

Procedura

うへつ

Superkomputer TERA-ACMiN

Wyposażanie

- 5 szaf typu *rack*
- 96 węzłów obliczeniowych
- 2× procesor Intel Xeon/ węzeł (8 rdzeni każdy)
- interfejs InfiniBand 4X QDR
- 16 × 2 akceleratory NVIDIA Tesla
- macierz dyskowa 288TB

http://acmin.agh.edu.pl/ index.php/pl/ aparatura-b/cen-komp

Moc

Całkowita teoretyczna moc obliczeniowa: 31TFlops

Pomysł:

Liczenie całek jest kosztowne

- zrównoleglenie?

Katowice, 12 Czerwca 2015

17 / 43

Idea - zrównoleglenie dwuetapowe

Niezależość

Każda z całek może być liczona niezależnie - nie ma konieczności wymiany informacji(komunikacji).

э

Rozwiązanie "process-pool"

Procedura minimalizacyjna (działająca w pojedynczym procesie) korzysta z rozwiązania nazywanego przez nas *process-pool*, zaimplementowanego przy pomocy *MPI* (Message Passing Interface)

Przejście molekularny → atomowy wodór

19 / 43

Software QMT

QMT

Aktualnie rozwijany jest kod pod nazwą QMT (Quantum Metallization Tools) bitbucket.org/azja/qmt

 $\mathsf{Przejście}\ \mathsf{molekularny}
ightarrow \mathsf{atomowy}\ \mathsf{wodór}$

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Atomowe ZOO

	orbitale	E _G	E_1^{jon}	E_2^{jon}	E_3^{jon}	E_4^{jon}
Н	1 <i>s</i>	-0.999				
He	1s, 2s, 2p	-5.796				
Li	1s, 2s, 2p	-14.827	0.377	5.450	9.000	
Be	1s, 2s, 2p	-29.046	0.564	1.287	11.195	16.000
В	1s, 2s, 2p	-49.153	0.947			
С	1s, 2s, 2p, 3s, 3p	-75.166				

Wszystkie wartości podane są w Rydbergach (Ry).

<ロ> (四) (四) (三) (三) (三) (三)

Atomowe ZOO

	orbitale	ΔE_G	ΔE_1^{jon}	ΔE_2^{jon}	ΔE_3^{jon}	ΔE_4^{jon}
Н	15	0,05%				
He	1s, 2s, 2p	0,19%				
Li	1s, 2s, 2p	0,86%	4,87%	1,97%	0,0025%	
Be	1s, 2s, 2p	0,99%	17,69%	3,85%	1,03%	0,013%
В	1s, 2s, 2p	0,33%	55,27%			
С	1s, 2s, 2p, 3s, 3p	0,72%				
	•					

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

$\operatorname{kańcuch}(H_2)_n$

Oczekiwania i założenia

- spójny opis układu poprawna asymptotyka (energia molekuły H₂, energia dysocjacji)
- jeden elektron na węzeł (tzw. half-filling) N = n gdzie n to liczba jąder
- uwzględniamy tylko stany elektronowe 1s

Przejście molekularny → atomowy wodór

Stan N elektronowy

$$\begin{split} |\Psi\rangle_N &= \mathcal{N}\left(A_1 \left| \begin{array}{c} \uparrow & \uparrow \downarrow \\ \uparrow \downarrow & \downarrow \end{array} \right\rangle + A_2 \left| \begin{array}{c} \uparrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \uparrow \downarrow \end{array} \right\rangle + \dots \right) \\ |\Psi\rangle_N &= \mathcal{N}\left(A_1 \left| 1, 1, 1, 0, 0, 0 \right\rangle \otimes \left| 0, 1, 1, 0, 0, 1 \right\rangle \\ &+ A_2 \left| 1, 0, 0, 0, 0, 1 \right\rangle \otimes \left| 0, 1, 1, 1, 0, 1 \right\rangle + \dots \right) \end{split}$$

п	4 <i>"</i>	N = n	$N = n, S_{tot}^z = 0$
2	16	6	4
4	256	70	36
6	4096	924	400
8	655 36	128 70	4900
10	1 048 576	184 756	635 04
12	16 777 216	2 704 156	853 776

Wymiar przestrzeni stanów w zależności od liczby uwzględnionych stanów jednocząstkowych 2n

Przejście molekularny → atomowy wodór

◆□▶ ◆掃▶ ◆臣▶ ★臣▶ ―臣 … 釣�?

Diagonalizacia macierzy hamiltonianu

Diagonalizacja wykonywana jest metodą iteracyjną (metoda Lanczosa). Może być usprawniona poprzez wykorzystanie odpowiednich praw zachowania, jak

$$\left[\mathcal{H}, S_{tot}^{z}\right] = 0.$$

Stany bazowe można w takiej sytuacji posortować, tak aby hamiltonian miał macierz blokowo diagonalną.

25 / 43

Przejście molekularny → atomowy wodór

Funkcje orbitalne i całki

Baza funkcji

Orbitale Slatera przedstawiamy jako kombinację liniową gaussianów:

$$\Psi_i^{1s}\left(\vec{r}\right) \approx \sqrt{\frac{\alpha^3}{\pi}} e^{-\alpha |\vec{r} - \vec{a}_i|} \approx \alpha^{3/2} \sum_{a=0}^{N_G} \left(\frac{2\alpha^2 \Gamma_a^2}{\pi}\right)^{3/4} e^{-\alpha^2 \Gamma_a^2 |\vec{r} - \vec{a}|^2}$$

Całki a rozwinięcie w gaussianach

Przybliżenie f. orbitalnej przez skończone rozwinięcie w f. Gaussa ułatwia liczenie całek, w szczególności dwuciałowych.

Złożoność obliczeniowa

Wyznaczenie pojedynczej całki V_{ijkl} - złożoność $\mathcal{O}(z^4 N_G^4)$

 $\mathsf{Przejście} \ \mathsf{molekularny} \to \mathsf{atomowy} \ \mathsf{wodór}$

 < □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > <</td>

 Katowice, 12 Czerwca 2015
 26 / 43

Funkcje $w_i(\vec{r})$ otrzymujemy stosując przybliżenie ciąsnego wiązanią.

Przejście molekularny → atomowy wodór

Katowice, 12 Czerwca 2015 27 / 43

 $Lańcuch molekularny (H_2)_n$

Model łańcucha H_2 - liczba całek M rośnie liniowo z r_{cutoff}

Liczba całek

Uzwględnienie oddziaływań do jak najdalszych sąsiadów jest bardzo istotne (zbieżność). W przypadku modelu łańcucha zbudowanego z trzech, periodycznie ułożonych molekuł H_2 jest to ok. 500 całek dwuciałowych! Czas wyliczenia każdej $\propto z^4 \times N_G^4$, dla z = 5 i $N_G = 9$ jest to liczba operacji $\propto 10^{10}$ (read, sqrt, exp, a/b).

Przejście molekularny → atomowy wodór

Molekuła H₂

Wyniki

 $\begin{aligned} R_B &= 1.43042(1.4010) \ a_0, \\ E_B &= -2.2959(-2.3322) \ Ry, \\ E_{ZPM} &= 0.024072(0.02) \ Ry. \end{aligned}$

New Journal of Physics

The open access journal at the forefront of physics

numerous and the OPG OPG OPP Institute of Physics

H_2 and $(H_2)_2$ molecules with an *ab initio* optimization of wave functions in correlated state: electron–proton couplings and intermolecular microscopic parameters

Andrzej P Kądzielawa¹, Agata Bielas², Marcello Acquarone³, Andrzej Biborski¹, Maciej M Maśka² and Józef Spałek^{1,4}

¹Imstynt Firsyki im. Mariana Smoluchowskiege, Uniwersytet Jagiellooki, ulica Łejasiewicza 11, PL-30348 Kraków, Poland ²Imstynt Firsyki, Uniwersytet Śląski, ulica Uniwersytecka 4, PL-40007 Katowice, Poland

³Diparimenio di Fisica e Scienze della Terra dell'Università di Parma, I-43100 Parma, Italy ⁴Atademickie Centrum Materialdov i Nanotechnologii, AGH Akademia Gómiczo-Hatnicza, Aleja Mickiewicza, 30, PL-30059 Kmldov, Poland E-mail: kalzielenvo? Di fui calcu nul ufsondelle il ini-edual

Received 19 August 2014, revised 4 November 2014 Accepted for publication 12 November 2014 Published 8 December 2014 New Journal of Physics 16 (2014) 122022

doi:10.1088/1367-2630/16/12/123022

Abstract

The byocomponent sector R_1 and $(R_1)_{n}$ are mitry relations in account between the 1 is determine in scata manner. The optimal tables min account between the 1 is determine an excata manner M_1 combining their variational determinations with the diagonalization of the hull minimisant in the scata component match tables and R_2 . All determine the component scata sector R_2 is a scata sector R_2 and R_2 and R_2 is a scata sector R_2 and scata sector R_2 is a scata sector R_2 and R_2 and R_2 is a scata sector R_2 and R_2 scata sector R_2 is a scata sector R_2 and R_2 and R_2 is a scata sector R_2 and R_2 and R_2 is a scata sector R_2 and R_2 and R_2 is a scata sector R_2 and R_2 and

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 loanse. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal chainse and DOI.

New Journal of Physics 16 (2014) 123022 1367-060014/123022-06830.00

© 2014 KOP Publishing Ltd and Deutsche Physikalische Gesellschaft

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Przejście molekularny → atomowy wodór

Katowice, 12 Czerwca 2015 29

29 / 43

Wyniki

Energia układu

$H/atom \equiv E_G/atom + fa$

 $\mathsf{Przejście}\ \mathsf{molekularny}\ o\ \mathsf{atomowy}\ \mathsf{wodór}$

Katowice, 12 Czerwca 2015 30 / 43

Entalpia układu

Przejście molekularny → atomowy wodór

Katowice, 12 Czerwca 2015 31 / 43

Entalpia w funkcji ciśnienia (siły)

Gęstość elektronowa w funkcji odległości między molekułami

Przejście molekularny → atomowy wodór

33 / 43

Gęstość elektronowa

Przejście molekularny → atomowy wodór

Katowice, 12 Czerwca 2015 34 / 43

Wyniki

Natura przejścia

Przejście

Przy przejściu U/W zmienia się z 1.49 (w fazie molekularnej) na 0.79 (w fazie kwaziatomowej). Średnie $C_0 \equiv \left\langle \hat{c}_1^{\dagger} \hat{c}_2 \right\rangle$ i $C_1 \equiv \left\langle \hat{c}_1^{\dagger} \hat{c}_3 \right\rangle$ przechodzą od konfiguracji molekularnej $C_0 \approx 1$ $C_1 \approx 0$ do mieszanej (inset z prawej).

Przejście molekularny → atomowy wodór

Katowice, 12 Czerwca 2015 35 / 43

Zasięg oddziaływań i liczba gaussianów N_G

Katowice, 12 Czerwca 2015 36 / 43

Procedura minimalizacyjna - skalowanie i analiza wydajnościowa

Założenie

Najbardziej czasochłonnym etapem obliczeń jest wyznaczenie próbnej wartości $E_G(\{\vec{R}_i\}, \alpha)$. Aby powyższe rozwiązanie było efektywne czas wyznaczania całek powinien być średnio nie krótszy niż czas związany z diagonalizacją macierzy hamiltonianu. Warunki te są spełnione dla prezentowanych wyników.

Założenie

Ciekawa jest analiza w reżimie tzw. *silnego skalowania* (stały romiar problemu vs zmienna liczba zasobów). Jedną z możliwości jest posłużenie się *Prawem Amdahla*.

Wyprowadzenie Prawa Amdahla

э

Wpływ parametru f na przyspieszenie

э

Prawo Amdahla a implementacja Process-Pool w QMT

Dla $N_G = 9$ oraz M = 250, $f \approx 0.97$. Wynik ten silnie zależy od obu parametrów - tym lepsze skalowanie im większa liczba całek lub/i N_G .

Przyspieszenie

Najważniejszym wskaźnikiem od strony użytkownika, jest absolutne przyspieszenie czyli stosunek

$$SU_{abs}(P) \equiv \frac{T_s}{T_p^{min}(P)}$$

w naszym przypadku $T_p^{min}(P)$ to czas odnoszący się do obliczeń w modelu dwuetapowego zrównoleglenia a T_s to czas w pełni sekwencyjnego odpowiednio zoptymalizowanego kodu*.

Ρ	$SU_{abs}(P)$
2	25.304
6	67.382
12	112.391
18	155.656
24	192.207
30	228.763
36	227.531
42	258.007
48	258.811
56	303.418

Wniosek

Sekwencyjnie, przedstawiony diagram E(R, a) liczyłby się ponad rok...

 $\mathsf{Przejście} \ \mathsf{molekularny} \to \mathsf{atomowy} \ \mathsf{wodór}$

Katowice, 12 Czerwca 2015 41 / 43

Podsumowanie

Implementacja metody EDABI

- efektywna
- generyczna

Układy wodorowe

- przejścia fazowe
- spójność z wynikami dla H₂

Wiele do zrobienia

- spektrum fononowe
- układy o wyższej wymiarowości
- inne kryształy molekularne (*LiH*, *H*₂*O* ...)
- druga kwantyzacja dla nieortonormalnych baz

Perspektywy

- Rozwijanie QMT
- DFT?
- EDABI + DE-GWF (dr Michał Zegrodnik)

・ 同 ト ・ ヨ ト ・ ヨ ト

Dziękuję za uwagę

 $\mathsf{Przejście}$ molekularny \rightarrow atomowy wodór

 < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ >
 ⊇

 Katowice, 12 Czerwca 2015
 43 / 43

Suplement

Hamiltonian

Hamiltonian

$$\begin{aligned} \mathcal{H} &= \sum_{i} \epsilon_{i} \hat{n}_{i} + \sum_{ij\sigma} t_{ij} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{i} U_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} - \sum_{ij} J_{ij} \mathbf{S}_{i} \mathbf{S}_{j} \quad (1) \\ &+ \frac{1}{2} \sum_{ij} \left(K_{ij} - \frac{J_{ij}}{2} \right) \hat{n}_{i} \hat{n}_{j} + \sum_{ij} J_{ij} \hat{c}_{i\uparrow}^{\dagger} \hat{c}_{i\downarrow}^{\dagger} \hat{c}_{j\downarrow} \hat{c}_{j\uparrow} \\ &+ \sum_{ij\sigma} V_{ij} \hat{n}_{i\sigma} \left(\hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \hat{c}_{j\sigma}^{\dagger} \hat{c}_{i\sigma} \right), \end{aligned}$$

where $\hat{c}_{i\sigma}$ and $\hat{c}_{i\sigma}^{\dagger}$ are the fermionic operators of annihilation and creation of the electron with spin σ on 1s orbital of hydrogen atom $i \mod 2$ in H_2 molecule $\lfloor \frac{i}{2} \rfloor$.

The numerical values of coefficients in Taylor series of ground-state energy. Up to the term $E_B^{(6)}$ all of the derivatives are calculated analytically. Orders seventh-ninth (marked by an asterisk) were calculated numerically due to complicated analytical expression for ground-state energy.

$E_B^{(1)}\left(\frac{R_Y}{a_0}\right)$	0.0
$\frac{1}{2!}E_B^{(2)}\left(\frac{Ry}{a_0^2}\right)$	0.430045
$\frac{1}{3!}E_B^{(3)}\left(\frac{Ry}{a_0^3}\right)$	-0.464021
$\frac{1}{4!}E_B^{(4)}\left(\frac{Ry}{a_0^4}\right)$	0.354584
$\frac{1}{5!}E_B^{(5)}\left(\frac{Ry}{a_0^5}\right)$	-0.253393
$\frac{1}{6!}E_B^{(6)}\left(\frac{Ry}{a_0^6}\right)$	0.174863
$\frac{1}{7!}E_B^{(7)}\left(\frac{Ry}{a_0^7}\right)^*$	-0.119178
$\frac{1}{8!}E_B^{(8)}\left(\frac{R_Y}{a_0^8}\right)^*$	0.0817586
$\frac{1}{9!}E_B^{(9)}\left(\frac{Ry}{a_0^9}\right)^*$	-0.0563837

The values (in atomic units) of the microscopic parameters of H_2 Hamiltonian and the electron-ion coupling constants at the hydrogen-molecule equilibrium ($R = R_B$ and $\alpha = \alpha_B$).

microscopic paramters (<i>Ry</i>)		coupling constants (Ry/a_0)	
ϵ	-1.75079	ξ_{ϵ}	0.00616165
t	-0.727647	ξ_t	0.598662
U	1.65321	ξυ	-0.124934
K	0.956691	ξκ	-0.234075
J	0.0219085	ξj	-0.00746303
V	-0.0117991	ξ_V	-0.000426452

・ 何 ト ・ ヨ ト ・ ヨ ト

3

The values (in atomic units) of the second-order electron-ion coupling constants $\xi_i^2 = \delta^2 \Xi / \delta R^2$ at the hydrogen-molecule equilibrium ($R = R_B$ and $\alpha = \alpha_B$).

coupling constants (Ry/a_0^2)		
ξ_{ϵ}^2	0.327335	
ξ_t^2	-0.560426	
ξ_U^2	0.0504027	
ξ_K^2	0.013028	
ξ_J^2	-0.00671566	
ξ_V^2	-0.0105204	

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ ● ● ●