Metallicity and superconductivity of the hydrogen-rich compounds

Andrzej P. Kądzielawa

Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland IT4Innovations, Vysoká škola báňská - Technical University of Ostrava, Ostrava, Czech Republic

andrzej.piotr.kadzielawa@vsb.cz

IT4Innovations national01\$#&0 supercomputing center@#01%101

Auckland, February 5, 2019

Metallic Hydrogen

Kraków, Department of Condensed Matter Theory

Andrzej Biborski (left), Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Kraków, Poland

Józef Spałek (right),

Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland

Quantum Metallization Tools

Quantum Metallization Tools

Sources

https://bitbucket.org/azja/qmt

♠ J. Spałek et al., Phys. Rev. B 61, 15676 (2000);

APK et al., Eur. Phys. J. B 86, 252 (2013);

♦ A. Biborski, APK, J. Spałek, Comput. Phys. Commun. 197, 7 (2015);

© A. Biborski, APK, J. Spałek, Phys. Rev. B 98, 085112 (2018).

Andrzej P. Kądzielawa

Metallic Hydrogen

Ostrava, IT4Innovations - Czech National Supercomputing Center

Three clusters: Anselm, Salomon (TOP500, peak performance 2.011 PFLOPS DP) and [] (\sim 1.8 PFLOPS DP; GPU on each node).

Andrzej P. Kądzielawa

Metallic Hydrogen

Auckland, Feb. 5, 2019

Research - Leading Directions

- Design of materials for the fission, fussion and nuclear fuels
- Protective and thermal coatings, ultrahard materials and 2D films
- Magneto-optical, laser induced and multiferroic phenomena
- Dimensionality reduced magnetic interactions

People

Dominik Legut (Team leader), Sergiu Arapan, Jaroslav Chovan, Stella Skiadopulou, Lukaš Kyvala, Michal Farana, Petr Dvoracek

Quantum mechanical calculations of electronic structure \rightarrow material properties, physical phenomena

- 100 MCh in last 5 years;
- more than 50 publications;
- $\sim 25-30\%$ of IT4I's total computational power

Methods

- Pseudopotential and all electron codes (VASP, Wien2k, Elk)
- Genetic predictive algorithms (USPEX, Calypso)
- Machine learning (TensorFlow)
- Original code Xray optics, transport, annealing, magnetic properties
- Molecular dynamics (LAMMPS)

Outline

1 Introduction

- Hydrogen in media
- Metalization of Hydrogen
- 2 Methods
 - Electronic interactions
 - Exact Diagonalization Ab Initio (EDABI++)
- 3 One-dimensional hydrogen
 - Model
 - State function
 - Electronic properties
 - Conclusions
- 4 Two-dimensional hydrogen
 - Model
 - Transition sequence
 - Metallicity
 - Superconductivity
 - Conclusions

Hydrogen in media

R. P. Dias, I. F. Silvera, Science 10.1126/science.aal1579 (2017)

:CH

The New Hork Times

SCIENCE

Hydrogen Squeezed Into a Metal, Possibly Solid, Harvard Physicists Say

By KENNETH CHANG JAN. 26, 2017

VOIRS FORUS KUNSTIG INTELLIGENS 3D-PRINT DIESELSKANDALEN KAMPFLY FOR MILLI

Metallisk hydrogen sætter forskerverdenen i koa

Påstand om fremstilling af metallisk hydrogen mødes med meget hård kritik fra forskere. Lige til skraldepanden, lyder det. Andre bakker dog de kritiserede forskere op.

Af Jens Ramskov 2, feb 2017 kl, 12:03

Прорыв в физике? Твёрдый металлический водород, возможно, стал реальностью

OX NEWS

Scientific breakthrough lost? Unique

Andrzej P. Kadzielawa

Le Scinne Mentalisservello e comportamento e epidemiologia e onde gravitazional

Idrogeno solido metallico, un annuncio e molti dubbi

Due ricercatori hanno annunciato di aver prodotto per la prima volta idrogeno solido metallico, previsto per via teorica circaottant'anni fa, un traguardo che aprirebbe la strada a nuove applicazioni, dai superconduttori ai propellenti per razzi. Ma non pochi scienziati nutrono dubbi riguardo alle modalità con cui è stato svolto l'esperimento e dunque al suo risultato (red)

World's first metallic hydrogen sample disappears

Last month physicists from Harvard University in the US had claimed to have successfully turned hydrogen into a metal - something researchers had been

PTI | Posted by Bijin Jose

Metallic Hydrogen

SINDEPENDENT im im ins they imported by the set beyond

World's only piece of a metal that could revolutionise technology has disappeared, scientists reveal

U.S. scientists create metallic hydrogen, a possible superconductor, ending quest

FULL COVERAGE INDIA ELECTIONS 2017

Metaliczny wodór, materiał marzeń, stał sie rzeczywistością

Han (C)

8/35

Jame interiorda firvery extensionnall of R2 bit. Terrar synaptric stud sin faktore. Mankrosery / Universatety Harvarda opiosili własnie, że udało im się stworzyć metaliczny wodór, materiał o poteocialnie revoluceinech właściwościach. Na razie jego wytworzenie wymaga akrainie niekżej temperatury j olbrzymiego siśnienia, większego, niż w samym środku Ziemi, jeśli okazałby się stabilny w normalnych

Metalization of Hydrogen

Prediction: Metalic state

E. Wigner i H. B. Huntington, J. Chem. Phys. **3**, 764 (1935):

- H H distance (d_{HH}) ,
- Wigner-Seitz radius $(r_s \equiv (\frac{3}{4\pi n})^{1/3})$.

Metalization at $p \approx 25$ GPa: $2r_s > d_{HH}$.

Prediction: Superconductivity in 300K

N. Ashcroft, PRL 21, 1748 (1968)

$$T_C = \Theta_D \mathcal{F}(el.-ph.)$$

	$T_C(K)$
Jupiter surface	$\sim 10^{-27}$
Jupiter core	~ 290

Hydrogen in 2D - superconductivity?

A. P. Drozdov et al., Nature 525, 73 (2015)

L_{th.}: Hanyu Liu et al., PNAS 114, 27 (2017) R_{exp.}: M. Somayazulu et al., arXiv:1808.07695 (2018)

Andrzej P. Kądzielawa

Picture

Born-Oppenheimer Approximation

$$\Psi^{ ext{total}} = \Psi^{ ext{electrons}} \otimes \Psi^{ ext{nuclei}}$$

Hamiltonian

Rydberg atomic units $\hbar = 2m_e = rac{e}{\sqrt{2}} = 1$

$$\begin{aligned} \mathcal{H} &= \\ \mathcal{T} &+ \mathcal{V}_{\text{el.-ion}} &+ \mathcal{V}_{\text{el.-el.}} &+ \mathcal{V}_{\text{ion-ion}} \\ -\sum_{i} \nabla_{i}^{2} &- \sum_{ij} \frac{2}{|\mathbf{r}_{i} - \mathbf{R}_{j}|} &+ \sum_{i>j} \frac{2}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} &+ \sum_{i>j} \frac{2}{|\mathbf{R}_{i} - \mathbf{R}_{j}|} \end{aligned}$$

Andrzej P. Kądzielawa

Exact Diagonalization Ab Initio (EDABI++)

Exact Diagonalization Ab Initio++ I

Single-particle basis

Conservation of complexity

Switching to the second quantization is effective only for the orthogonal bases (otherwise either $\left\{ \hat{c}_{i}, \hat{c}_{j}^{\dagger} \right\} = \mathbb{S}_{ij}$ or $\hat{c}^{\ i} \equiv \mathbb{S}^{ij} \hat{c}_{j}^{\dagger}$).

LCAO

Orthogonal basis $\{w_i\}$ can be expressed as a linear combination of Slater orbitals $\{\psi_i\}$:

$$w_i(\mathbf{r})\sum_k \beta_j \psi_j(\mathbf{r}),$$

satisfying orthonormality condition

$$\langle \mathbf{w}_i | \mathbf{w}_j \rangle = \delta_{ij}.$$

Suitable methods

Let us define mixing matrix $\mathbb{W}_{ij} \equiv \langle w_i | \psi_j \rangle$.

- Löwdin orthogonalization
 - one solution close to starting orbitals
 - arnothing dense \mathbb{W}
 - Ø requires sharp cut-off for infinite systems
- quadratic forms
 - \varnothing many solutions
 - ♪Ø allows/requires symmetry constrains
 - ▲ sparse W
 - ▲ systematic approach to infinity

Auckland, Feb. 5, 2019

Exact Diagonalization Ab Initio++ II

Andrzej P. Kądzielawa

Hamiltonian

Hamiltonian and its parameters

By acting on the starting, first-quantization Hamiltonian with the field operator: $\Psi_i \equiv w_i(\mathbf{r})\chi_\sigma \hat{c}^{\dagger}_{i\sigma}$ we get the second-quantization Hamiltonian

$$\mathcal{H} = \sum_{\substack{i,j\\\sigma}}^{(\mathsf{P}|\mathsf{A}|\mathsf{R})\mathsf{BC}} t_{ij}\hat{c}_{i\sigma}^{\dagger}\hat{c}_{j\sigma} + \sum_{\substack{i,j,k,l\\\sigma,\sigma'}}^{(\mathsf{P}|\mathsf{A}|\mathsf{R})\mathsf{BC}} V_{ijkl}\hat{c}_{i\sigma}^{\dagger}\hat{c}_{j\sigma'}^{\dagger}\hat{c}_{l\sigma'}\hat{c}_{k\sigma} + \mathcal{H}_{\mathsf{ext}} + \mathcal{V}_{\mathsf{ion-ion}}$$

with fermionic creation/annihilation operators

$$\{\hat{c}_{i\sigma}^{\dagger},\hat{c}_{j\sigma'}^{\dagger}\}\equiv\{\hat{c}_{i\sigma},\hat{c}_{j\sigma'}\}\equiv0$$
 and $\{\hat{c}_{i\sigma}^{\dagger},\hat{c}_{j\sigma'}\}\equiv\delta_{ij}\delta_{\sigma\sigma'}.$

Hence, all of the information about single-particle wavefunction exists only in the microscopic parameters

$$\begin{split} t_{ij} &= \Big\langle w(\mathbf{r})_i \Big| - \nabla^2 - \sum_{k=1}^n \frac{2}{|\mathbf{r} - \mathbf{R}_k|} \Big| w(\mathbf{r})_j \Big\rangle, \\ V_{ijkl} &= \Big\langle w(\mathbf{r})_i w(\mathbf{r}')_j \Big| \frac{2}{|\mathbf{r} - \mathbf{r}'|} \Big| w(\mathbf{r}')_k w(\mathbf{r})_l \Big\rangle. \end{split}$$

Andrzej P. Kądzielawa

Exact Diagonalization Ab Initio++ III

Andrzej P. Kądzielawa

Metallic Hydrogen

Auckland, Feb. 5, 2019

Diagonalization core

Advantage

No constrains on diagonalization method

Already applied:

- Lanczos
- Truncated Lanczos
- Variational Monte Carlo
- Gutzwiller Wavefunction
- Gutzwiller Approximation

Whatever provides us with:

- ground-state energy (E_g)
- (ideally) excited states close to E_g
- (in)direct correlation picture
- observables for comparison with experiment
- scalability

2nd-quantization states

$$|\Psi\rangle_{N} = \mathcal{N}\sum_{k} A_{k} |\Phi_{k}\rangle, \quad |\Phi_{k}\rangle = \prod_{i \in \Omega_{\uparrow k}} \hat{c}^{\dagger}_{i\uparrow} \prod_{j \in \Omega_{\downarrow k}} \hat{c}^{\dagger}_{j\uparrow} |0\rangle, \langle \Phi_{k} |\Phi_{l}\rangle = \delta_{kl}$$

One-dimensional hydrogen Model

For details see: Phys. Rev. B 98, 085112 (2018)

Assumptions

(a) two hydorgen atoms in the unit cell (α, β), with the lattice parameter a and bond length b;
(b) range of the hoppings terms extends up to 2a;
(c) interactions counted up to the range of 2a.

"Infinite" crystal

♂ Periodic Boundary Conditions;
♂ supercell of 17, 21, 25, 33 and 37 unit cells;

Hamiltonian

Second quantization

$$\begin{aligned} \mathcal{H} &= \sum_{i} \epsilon_{i} (\hat{n}_{i\uparrow} + \hat{n}_{i\downarrow}) + \sum_{i \neq j} t_{ij} (\hat{c}_{i\uparrow}^{\dagger} \hat{c}_{j\uparrow} + \hat{c}_{i\downarrow}^{\dagger} \hat{c}_{j\downarrow}) & // \text{ free electrons} \\ &+ \sum_{i} U_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} + \sum_{i \neq j} K_{ij} \hat{n}_{i} \hat{n}_{j} & // \text{ interactions} \end{aligned}$$

First-to-second-quantization calculation step

$$\begin{aligned} t_{ij} &\equiv \left\langle w_i(\mathbf{r}) \right| - \nabla^2 - \sum_{l \in \text{ions } |\mathbf{R}_l - \mathbf{r}|} \left| w_j(\mathbf{r}) \right\rangle & \epsilon_i \equiv t_{ii} \\ V_{ijkl} &\equiv \left\langle w_i(\mathbf{r}) w_j(\mathbf{r}') \right| \frac{2}{|\mathbf{r} - \mathbf{r}'|} \left| w_k(\mathbf{r}) w_l(\mathbf{r}') \right\rangle & U_i \equiv V_{iiii}, \ K_{ij} \equiv V_{ijij} \end{aligned}$$

Dimensionality - 1D chain in 3D space

w_i(**r**) build from 1*s* Slater orbitals;
 Coulomb potential *V_C*(**R**) ∝ |**R**|⁻¹;

Andrzej P. Kądzielawa

Auckland, Feb. 5, 2019 19 / 35

Proper state function

One-dimensional enthalpy

$$h \equiv f\frac{a}{2} + \frac{E}{N},$$

with f as an external force (analogue of the pressure), the lattice parameter a, and ground-state energy E for the N-particle supercell.

Run for given f

- 🔿 opt. structure
 - 🔿 opt. wavefunction
 - 🔿 opt. Jastrow

Results for finite systems

Peierls-like distortion from First Principles for a correlated system

No distortion for small systems. Molecular → atomic transition at high "pressure" → reverse Peierls-like transition. for finite systems cf. also E. Giner *et al.*, J. Chem. Phys. **138**, 074315 (2013).

Andrzej P. Kądzielawa

Metallic Hydrogen

Thermodynamic limit

Conditions of molecular-to-atomic transition for $N ightarrow \infty$

finite-size scaling of atomization lattice parameter $a_{dim} \approx 1.17 a_0 > 0$; finite-size scaling of atomization force $f_c \approx 6.02 \frac{Ry}{a_0} < \infty$.

Andrzej P. Kądzielawa

Metallicity of hydrogen chain

Point of reference

We use the equilibrium microscopic parameters of the Hamiltonian for N = 50 as a point of reference.

Charge gap

$$\Delta_N \equiv \left. \frac{E_{N+4} - 2E_N + E_{N-4}}{4} \right|_{@h(f)}$$

 E_N - the ground state of the *N*-particle system described by the reference Hamiltonian with the structure minimizing the effective enthalpy.

Thermodynamic limit

$$\Delta \equiv \Delta_{\infty} = \lim_{N \to \infty} \Delta_N$$

Closing of the charge gap

Apparent metallicity of the hydrogen chain in the atomic phase

- charge gap closed at the MLC \rightarrow ALC transition;
- further-than-nearest neighbor hoppings;
- chain exist in 3D (both single-particle wavefunctions and Coulomb potential are taken for D = 3);

in agreement with L. Stella et al., Phys. Rev. B 84, 245117 (2011)

Density-density correlation

Density-density correlation

$$C_{i,j} \equiv \left\langle \hat{n}_i \hat{n}_j \right\rangle - \left\langle \hat{n}_i \right\rangle \left\langle \hat{n}_j \right\rangle$$

Andrzej P. Kądzielawa

Spin-spin correlation

Spin-spin correlation

$$S_{i,j}\equiv ig\langle (\hat{n}_{i\uparrow}-\hat{n}_{i\sigma})(\hat{n}_{j\uparrow}-\hat{n}_{j\sigma})ig
angle = ig\langle \hat{S}^z_i\hat{S}^z_j
angle$$

Andrzej P. Kądzielawa

Conclusions 1D

Hydrogen chain

- Peierls-like distortion at ambient "pressure";
- correlations do not weaken distortion;
- external force induces molecular → atomic transition;
- concomitant atomization and metallization ;
- no long-range order;

Triangular lattice

Two-dimensional crystal

periodic boundary conditions in xy plane;

 Lanczos algorithm for the diagonalization core of 6 and 8 atoms (to comply with proper Néel 120° and 90° phases);

Transition sequence

2D enthalpy and lattice parameters

Andrzej P. Kadzielawa

Metallic Hydrogen

Auckland, Feb. 5, 2019

Atomicity

Classically

Andrzej P. Kądzielawa

Magnetic order

FM vs. AFM exchange

 $J_{\rm FM. Hund-like} \ll J_{\rm AFM. kinetic}$ Required for the ambient pressure stability of the atomic phase!

Spin correlation

Molecular phases: molecular H_2 , near-spin-singlet Atomic phase: 120° Néel order

	mol.	$ \rightarrow $	\parallel mol. II $ ightarrow$ atomic		$ \mathbf{S} _{molecule} \equiv \mathbf{S} $	(x _{2D} , -	$\frac{R}{2}$) + S ₂ (x _{2D} ,	$(\frac{R}{2}) $	
S _{molecule}	0.10	0.14	0.16	0.54	$ S _{triangle} \equiv S $	(x _{2D} ,	$\frac{R}{2}$) + S(x _{2D} + e ₂)	$(1, \frac{R}{2})$	
S _{triangle}	0.86	0.87	0.86	0.077			+ S(x _{2D} + e	2, <u>R</u>)	
Andrzei P.	Kadziela	wa		Metallic	Hydrogen	Auc	kland, Feb. 5, 2	019	31 / 35

Andrzej P. Kadzielawa

Metallic Hydrogen

Auckland, Feb. 5, 2019

Two-step metallization

Metallicity of atomic phase

Band structure

Bare bands

easily calculabledepend only on *H*_{free}

Correlated bands

full *H* dependenceno generic method

Bare bands with a correlator

- calculable
- local interaction
- Ø correlator physics

33 / 3<u>5</u>

Possibility of superconducting state

$$r_{S} = r_{S}(V)$$
• volume of an electron in
phases I & II:

$$V_{e} = \frac{V_{mol}}{2} \equiv \frac{1}{2}a^{2}(R + \frac{2}{\zeta}),$$
• volume of an **atom** in
atomic phase:

$$V_{e} = a^{2}\frac{2}{\zeta},$$

source	method	$r_s(a_0)$
J. McMinis et al. (arXiv:1309.7051)	DMC	2.27
G. Mazzola et al. (Nat. Commun. 5, 3487 (2014))	DMC	1.28
JL. Li et al. (Phys. Rev. B 66, 035102 (2002))	LSDA	2.78
JL. Li et al. (Phys. Rev. B 66, 035102 (2002))	GGA	2.50
B. I. Min et al. (Phys. Rev. B 33, 324 (1986))	LMTO-LSDA	2.85
A. Svane et al. (Solid State Commun. 76, 851 (1990))	SIC-LSDA	2.45
B. G. Pfrommer et al. (Phys. Rev. B 58, 12680 (1998))	GGA-PW91	2.5
APK, AB, JS (2018)	EDABI	1.265
R. P. Dias et al. (Science: 10.1126/science.aal1579 (2017))	eksperyment	1.255 - 1.34

Θ_D, mol, I

 Θ_D , mol. II

Θ_D, at. 120°

T_C, at. 120°

120' .SC

= 0.2 ~ ~

34 / 35

McMillana formula

Conclusions

Physics of hydrogen planes

- concomitant atomization & metallization:
- long-range interactions ($\sim ||\mathbf{R}||^{-p}$)
- London-like interactions in insulating molecular phases:
- benchmark for infinite-system quantum chemistry

- medianly correlated system (playground for a physicist)
- (most probably)[citation needed] anharmonic phonons;
- (but maybe)[citation needed] correlation driven;
- extreme pressure (chemical?);
- record high T_C ;

Andrzej P. Kadzielawa

Metallic Hydrogen

Auckland, Feb. 5, 2019