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Chapter 1

Introduction

From all hypothetical astronomical objects the most famous and well-studied

are Black Holes. The simplest mathematical model of the Black Hole is

described by Schwarzschield metric. The solution of Einstein equations:

ds2 = −
(
1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ dΩ2, (1.0.1)

is given in terms of mass M .

Less recognisable is a speci�c class of objects called the Black Hole Mim-

ickers - the alternative solutions in general relativity that can exist as ob-

served Black Hole Candidates (for example Sagittarius A* in the center of

the Milky Way [EGA+05]). Among them are Gravastars, Wormholes, Brane

World solutions and Boson Stars.

Lora-Clavijo, Cruz-Osorio and Guzmán in [LCCOG10a] examined the

model of Boson Stars towards �nding the characteristics distinguishing Bo-

son Stars from Schwarzschield Black Holes. They obtained Boson Star space-

time, compacti�ed it and evolve massless scalar �elds on obtained back-

ground. They claimed that a distinguishing characteristics might be a tail

of massless scalar �eld decay - t−p for Black Holes (p is constant parameter),

but not for Boson Stars.

The massless scalar �eld decay in Boson Star space-time should decay in

the same way as Schwarzschield space-time.
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6 CHAPTER 1. INTRODUCTION

Our goal is to redo the calculations, �nd Boson Star metric, compactify

it and �nd the evolution of massless scalar �eld on obtained space-time to

compare with results of [LCCOG10a].



Chapter 2

Boson Stars

In Chapter 2 the mathematical model of Boson Star will be

explained. The Lagrangian density with stress-energy tensor

it implies will be given. The metric Ansatz will be proposed.

System of equations resulting from Einstein equations and

Einstein-Klein-Gordon system of equations will be shown.
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8 CHAPTER 2. BOSON STARS

Boson Star is a con�guration of self-gravitating complex scalar �eld in

equilibrium. It was �rst introduced by Kaup [Kau68] and Ru�ni and Bonaz-

zola [RB69], as a spherically symmetric solution to Einstein-Klein-Gordon

equations. Friedberg, Lee and Pang [FLP87] found in 1987 that, unlike in

Ru�ni's and Bonazzola's work, there is more than one solution to a given

system of equations, and a countable series of the solutions were introduced.

Unlike other Black Hole Mimickers the stability of Boson Stars was well

examined [Gle88], making them potentially valuable objects to examine.

2.1 Mathematical assumptions

Let us take a complex scalar �eld Φ (with its complex conjugate Φ∗) and the

Lagrangian density as follows:

L = −R

κ0
+ gµν∂muΦ

∗∂νΦ + V
(
|Φ|2

)
, (2.1.1)

where κ0 = 16πG (assuming c = 1), and V is the potential of self-

interaction of the �eld. The stress-energy tensor reads:

Tµν =
1

2
(∂µΦ

∗∂νΦ + ∂µΦ∂νΦ
∗)− 1

2
gµν
(
∂αΦ∗∂αΦ + V

(
|Φ|2

))
. (2.1.2)

For Boson Stars we will use the potential V in a form:

V = m2 |Φ|2 + λ

2
|Φ|4 , (2.1.3)

wherem is to be considered as mass of a single boson, and λ as a coe�cient

of a two-body self-interaction mean �eld approximation.

Additionally the function Φ(t, r) can be separated into:

Φ(t, r) = eiωtφ(r). (2.1.4)

The sketch of proof of such a separation can be found in Appendix B.
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From (2.1.2) and (2.1.3) we can easily show that stress-energy tensor (for

Φ as in (2.1.4)) does not depend on time. The Einstein equations:

Rµν −
1

2
gµνR = κ0Tµν (2.1.5)

brings us to the conclusion that the geometry of the space-time is time-

independent.

2.1.1 Einstein-Klein-Gordon equation

The Bianchi identity can be reduced to the Klein-Gordon equation:

(
�− dV

d |Φ|2

)
Φ = 0, (2.1.6)

where �.= 1√
−g
∂µ (

√
−ggµν∂ν . ), and g is determinant of the metric.

Solutions of (2.1.6) with conditions set above are called Boson Stars.

2.2 Metric ansatz and equations

To obtain the metric we must introduce a metric Ansatz. Let it be:

ds2 = −α (r)2 dt2 + a (r)2 dr2 + r2dΩ2. (2.2.1)

We will derive the equations for ∂rα(r) and ∂ra(r) from (2.1.5):

∂ra(r)

a(r)
=

1− a(r)2

2r
+
r

2

a(r)2

α(r)2
Ttt, (2.2.2a)

∂rα(r)

α(r)
=
a(r)2 − 1

2r
+
r

2
Trr. (2.2.2b)

Using (2.2.2) and (2.1.2), we can obtain explicit form of the equations,

but with the third function Φ(t, r). To complete the system of equations we

will need one more equation - (2.1.6). Φ(t, r) can be separated as in (2.1.4).

After the substitution the system of equations reads:
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∂ra

a
=

1− a2

2r
+
κ0r

4

(
ω2φ2 a

2

α2
+ (∂rφ)

2 + a2φ2

(
m2 +

λ

2
φ2

))
, (2.2.3a)

∂rα

α
=
a2 − 1

r
+
∂ra

a
− κ0r

2
a2φ2

(
m2 +

λ

2
φ2

)
, (2.2.3b)

∂rrφ+ ∂rφ

(
r

2
+
∂rα

α
− ∂ra

a

)
+ ω2φ

a2

α2
− a2φ

(
m2 + λφ2

)
= 0. (2.2.3c)

System (2.2.3) contains three parameters and one constant, but this num-

ber can be reduced to just one by introducing new variables. We rescale the

old ones to obtain the minimal number of parameters in equations:

φ̂ =

√
κ0
2
φ, (2.2.4a)

r̂ = mr, (2.2.4b)

α̂ =
m

ω
α, (2.2.4c)

t̂ = ωt, (2.2.4d)

Λ =
2λ

κ0m2
. (2.2.4e)

Where t̂ and r̂ are dimensionless, constant κ0 disappears from equations,

and only one parameter - Λ - is left. After removing the hats:

∂ra

a
=

1− a2

r
+
r

2

[
φ2 a

2

α2
+ (∂rφ)

2 + a2
(
φ2 +

Λ

2
φ4

)]
, (2.2.5a)

∂rα

α
=
a2 − 1

r
+
∂ra

a
− ra2φ2

(
1 +

Λ

2
φ2

)
, (2.2.5b)

∂rrφ+ ∂rφ

(
2

r
+
∂rα

α
− ∂ra

a

)
+ φ

a2

α2
− a2

(
1 + Λφ2

)
φ = 0. (2.2.5c)
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2.2.1 Metric function behaviour estimation for small ra-

dius

To integrate system of equations (2.2.5) numerically, we need values of the

functions in point of origin. Additionally we require regularity of system of

equations at r (particularly at r = 0), and asymptotic �atness of metric for

r → ∞.

It is crucial to examine the behaviour of the functions a(r), α(r) and φ(r)

around zero, because, as we can see in (2.2.5), there are terms ∝ r−1, that

can not be solved numerically naïve way. The results are:

• a(r = 0) = 1,

• φ(r = 0) is �nite,

• α(r = 0) is �nite,

• ∂rφ(r = 0) = 0.

Asymptotic �atness gives φ(r → ∞) = 0.

To obtain those results we expand those functions around 0 in terms of

Taylor series, then puts expansions into the equations and disentangles the

expressions for each coe�cient. This leads to the form:

a(r) = 1 + a2r
2 + a4r

4 + a6r
6 + o(r8), (2.2.6a)

α(r) = α0 + α2r
2 + α4r

4 + α6r
6 + o(r8), (2.2.6b)

φ(r) = ϕ0 + ϕ2r
2 + ϕ4r

4 + ϕ6r
6 + o(r8). (2.2.6c)

All coe�cients are uniquely determined by three parameters α(0), φ(0)

and Λ. Except for the important values of derivatives of given functions at

r = 0 (obviously 0) and the second derivative of φ(r) (the r2 term times 2),

we obtain important information about metric functions α and a and �eld

amplitude φ - they are even functions around r = 0 with accuracy o(r8).

Explicit forms of coe�cients can be found in Appendix A.1.
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2.2.2 Sketch of solution

Friedberg, Lee and Pang in [FLP87] showed that there are more than one

solution to Boson Star metric equations. We can identify those solutions,

creating from them the countable set, numbered by the number of zeros. φ0

will be the ground state (with no zeros) and φn the excited states (n - number

of zeros).

We have initial conditions for a(r = 0) = 1 and asymptotic value φ0(r →
∞) → 0. For numerical solution we need value of either α(0) or φ0(0) (the

other must be left free to the shooting method to satisfy the value of φ0 in

in�nity).

We solve system of equations (2.2.5) with Runge-Kutta fourth-order method

with α(0) as a shooting parameter with the respect to two parameters - φ0(0)

and Λ. Because of our interest in the ground state, the shooting method must

be slightly modi�ed: we add the condition of solution having no zeros.

The �gure 2.1 represents �rst step of bisection (described in Section 6.1)-

searching the interval of initial value [α(0)L, α(0)R], such that for α(0)L =

0.88194 φ(r) has one zero and for α(0)R = 0.88472 φ(r) has no zeros. On the

�gure 2.2 are plots of the solutions for the initial value of α(r) α(0)L, α(0)R

and the solution φ0(r) from the second step of bisection.

2.2.3 Mass function M(r)

For Schwarzschield space-time a(r) =
(
1− 2M

r

)− 1
2 . Analogically we can in-

troduce mass function M(r). From (2.2.5a):

M(r) =
r

2

(
1− 1

a(r)2

)
. (2.2.7)

It is obvious that to ensure asymptotic �atness at in�nity we must have

�nite limit of M(r → ∞) = M∞ < +∞. In other words for big r, then

function φ(r)
r→∞−−−→ 0, and a(r) is equal to

(
1− 2M∞

r

)− 1
2 . It is consistent

with metric asymptotics obtained in [BW00]. Equation (2.2.5b) for changes

into:
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Figure 2.1: Plots of solutions for φ0(r) for di�erent values of α(0). It can

be easily spotted that solution must be between α(0) = 0.88194 and α(0) =

0.88472.

∂rα

α
=
M∞

r2
1

1− 2M∞
r

+ o
(
φ2
)
. (2.2.8)

That can be integrated and simplify to:

α =

√
1− 2M∞

r
. (2.2.9)

We can observe on the �gure 2.3 howM∞ depends on parameters - Λ and

φ(0).
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Figure 2.2: Plot of solution φ0(r) (red), and solutions for initial borders of

bisection interval.
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Chapter 3

Hyperboloidal foliations and

scri-�xing

In Chapter 3 3+1 formalism [Gou07] will be brie�y discussed,

the hyperboloidal foliations will be introduced, and it's nu-

merical form will be shown. Method of compacti�cation will

be introduced. The behaviour of height function's derivative

around r̂ = 0 will be shown.
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In numerical methods of solving partial di�erential equations (like wave

equation in 1+1 dimensions) we may encounter an obstacle: For in�nite

domain we are forced to introduce arti�cial border in one of the coordinates.

After �nite interval in time, the signal from the border will in�uence solution

in whole domain, thus the border must be simulate in the proper way.

It is not always clear how neglect in�uence of the border. We may try to

avoid this by compactifying naïvely the spatial coordinate:

r̂ ∈ [0,+∞] → r ∈ [0, 1]. (3.0.1)

Let us consider (following [Zen10]) the oscillating function ψ (t, r̂):

ψ (t, r̂) = e2πi(kr̂−ωt), (3.0.2)

where r̂ is spatial coordinate r̂ ∈ [0,+∞], k ∈ R, ω ∈ R. Since ψ is

oscillating in�nite number of times in the direction of r̂, after compacti�cation

to r we will loose information about oscillations.

We can omit this di�culty by �rst changing time coordinate such that in

the direction of the new one ψ is oscillating �nite number of times:

τ(t, r̂) = t− k

ω

(
r̂ +

C

1 + r̂

)
. (3.0.3)

Then (3.0.2) changes into:

ψ (τ, r̂) = e2πi(
kC
1+r̂

−ωτ), (3.0.4)

that has maximum kC oscillations (for r̂ ∈ {kC−1, kC
2
−1, ... , kC

[kC]
−1}).

The transformation for space-time is much more complicated, but idea is

the same.

3.1 Hyperboloidal foliations

Let the metric be in a form as given in (2.2.1):
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ds2 = −α (r̂)2 dt2 + a (r̂)2 dr̂2 + r̂2dΩ2. (3.1.1)

The time coordinate t slices space-time into Cauchy hypersurfaces, ap-

proaching spatial in�nity in the asymptotic region. We are interested in

the null in�nity, therefore we need the new coordinate τ = τ(t, r̂), slicing

space-time into hyperboloidal hypersurfaces.

The important feature of stationary metric is natural representation of

Killing observers. A set of points (observers) travelling in the direction of

Killing vector �eld will not distort distances from each other. Then, the

Killing observers would be a good detector of gravitational waves (hence the

relative movement between each of them can not be originated from space-

time curvature), and leaving it in an particularly easy form (given by ∂t) is

considered important.

∂τ =
∂t

∂τ
∂t +

∂r

∂τ
∂r̂,

and from above: ∂τ = ∂t,

which leads to:
∂t

∂τ
= 1 and

∂r̂

∂τ
= 0.

The restriction above brings the expression on τ to:

τ = t− h(r̂), (3.1.2)

where sign is a convention, and h(r̂) will be referred to as height function.

In terms of new coordinates the metric will carry a new form:

ds2 = −α (r̂)2 dτ 2−2α (r̂)2 h′ (r̂) dτdr̂+
(
−α (r̂)2 h′ (r̂)2 + a (r̂)2

)
dr̂2+ r̂2dΩ2,

(3.1.3)

where h′ (r̂) = dh
dr̂
. The choice of height function is still not clear. We

require more information about its behaviour. In the next sections one of

the methods will be shown.
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3.2 Metric compacti�cation

For computational purposes, we require metric to be compacti�ed (as shown

at the beginning of this chapter). By introducing:

r = r(r̂), (3.2.1)

where r is restricted to �nite interval. At the boundary of the domain the

metric (3.1.3) becomes singular. The singularity is removed by multiplying

the metric by conformal factor Ω2 (not to be misunderstood as in�nitesimal

part of S2 metric will be written as dΩ̂), that vanishes at the boundary.

Furthermore we require that the new coordinate r is an area radius on the

new metric which implies:

r̂(r) =
r

Ω
. (3.2.2)

We obtain:

ds2 =− Ω2α (r)2 dτ 2 − 2α (r)2 h′ (r) (Ω− rΩ′) dτdr+

+

(
−α (r)2 h′ (r)2 + a (r)2

)
Ω2

(Ω− rΩ′)
2
dr2 + r2dΩ̂2,

(3.2.3)

where Ω′ = dΩ
dr
. The choice of Ω is free, although there are some forms

that proved to be useful for di�erent metrics. For example for Schwarzschield

space-time we usually choose Ω = 1 − r. For Boson Stars the convenient

conformal factor is:

Ω =
1− r2

2
, (3.2.4)

compactifying metric on [0, 1] interval.



3.3. HEIGHTS FUNCTION FOR BOSON STARS SPACE-TIME IN 3+1 FORMALISM21

3.3 Heights function for Boson Stars space-time

in 3+1 formalism

Obtaining the direct expression for h(t), even though on the �rst moment

desired, is not a necessity - in the compacti�ed metric there is only the

derivative of height function. Therefore we should look for expression for

h′(t) = dh
dr
. For this purpose we will use the properties of 3 + 1 formalism

and the (3.2.3) metric written in such a form. Before calculation the brief

explanation of functions used in model will be provided.

3.3.1 3+1 formalism

Figure 3.1: The diagram of elapse of proper time τ and time t

Let's consider the case, where time-space is described by metric gµν and

time-constant, space-like hypersurface Σt by metric (3 dimensional) γij. Let

n̂ be a time-like vector, normal to hypersurface, and V µ = (0, V 1, V 2, V 3) be

a vector tangent to hypersurface. We can show that:

n̂ · V = 0 =⇒ nµ = (−α, 0, 0, 0) −→ nµ = −α(gtt, gti) (3.3.1)

where α > 0 functions is called laps. We demand n̂ to be normal, thus:

−1 = nµn
µ = α2gtt. (3.3.2)

We can introduce the projection of dt on n̂, as on �gure 3.1:

dτ =
(n̂, (dtµ))

(n̂, n̂)
n̂ = αdtn̂, (3.3.3)
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where (·, ·) is scalar product. Furthermore:

dτ = αdtn̂ −→ dτµ = −α2dt(gtt, gti). (3.3.4)

Shift β:

dτ + β = dt→ β = dt− dτ −→ βµ = dt
(
1 + α2gtt, α2gti

)
. (3.3.5)

βt = 0, because we demanded n̂ normal.

From (3.3.1), (3.3.4) and (3.3.5) we can read o� the form of metric gµν

(remembering that on Σt the metric is γij:

gµν =

[
−α2 + βkβk βi

βi γij

]
(3.3.6)

and

gµν =

[
− 1

α2
βi

α2

βi

α2 γij − βiβj

α2

]
(3.3.7)

Expression (3.3.6) can be rewritten in a form:

gµνdx
µdxν = −α2dt2 + γij

(
dxi + βidt

) (
dxj + βjdt

)
. (3.3.8)

Since we are interested in spherically symmetric space-time above equa-

tion can be rewritten as:

ds2 =
(
−α2 + γ2β2

)
dt2 + 2βγ2drdt+ γ2dr2 + r2dΩ2, (3.3.9)

were Ω is standard metric on S2, β and γ are scalar function in new

coordinates.

In Riemann Geometry the Riemann tensor Rµ
νρσ carries the information

of curvature of a manifold. Distinguishing a hypersurface in manifold makes

a similar construction for hypersurface desirable. We introduce (for time-

constant hypersurface in space-time) a new object carrying information about

curvature of Σt. Form:
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k : Σt × Σt → R, (3.3.10a)

k (u, v) = −u · 5vn (3.3.10b)

will be called extrinsic curvature. It is evaluating the change of direction

of normal vector 'moving' on hypersurface. In analogy to Ricci scalar we can

ask about scalar value with information about curvature. Consider:

k = Trk = γijkij (3.3.11)

- the mean extrinsic curvature. By (3.3.10b), the expression for mean

extrinsic curvature will be given by:

k = 5n =
1√
−g

∂µ
(√

−gnµ
)
, (3.3.12)

where g is determinant of the metric.

3.3.2 Derivation of h′(t) equation for Boson Stars

We can observe the similarity of its form and a form of 3+1 metric (as shown

in (3.3.9) with bars added to avoid misapprehensions):

ds̄2 =
(
−ᾱ2 + γ̄2β̄2

)
dt2 + 2β̄γ̄2dr̂dt+ γ̄2dr̂2 + r̂2dΩ2 (3.3.13)

and a non-compacti�ed space-time, with the transformation of time vari-

able. After the transformation constant time hypersurfaces are hyperboloidal

slices reaching J +:

ds2 = −α (r̂)2 dτ 2−2α (r̂)2 h′ (r̂) dτdr̂+
(
−α (r̂)2 h′ (r̂)2 + a (r̂)2

)
dr̂2+ r̂2dΩ2.

(3.3.14)

If we desire to have metric written in such a form, we should disentangle

the ᾱ, β̄ and γ̄ functions:

ᾱ(r̂) =
α(r̂)a(r̂)

γ̄(r̂)
, (3.3.15a)
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β̄(r̂) = −h
′(r̂α(r̂)2)

γ̄(r̂)2
, (3.3.15b)

γ̄(r̂)2 = a(r̂)2 − α(r̂)2h′(r̂)2. (3.3.15c)

Having the explicit form of those functions we can use the properties of

3 + 1 formalism to obtain the expression for the mean extrinsic curvature

k. To proceed we need the form of the unit normal vector to the spatial

hypersurfaces pointing to the future (by equation (3.3.1)):

[nµ] =

[
γ̄

αa
,
h′α

γ̄a
, 0, 0

]
. (3.3.16)

Now, using (3.3.12):

k =
1

r̂2α(r̂)a(r̂)
∂r̂

(
r̂2h′(r̂)α(r̂)

γ̄(r̂)

)
. (3.3.17)

For constant k we can integrate equation above with integration constant

−C
k
:

k

∫
r̂2α(r̂)a(r̂)dr̂ − C =

r̂2h′(r̂)α(r̂)√
a(r̂)2 − α(r̂)2h′(r̂)2

. (3.3.18)

From (3.3.18) we can disentangle expression for h′(r):

h′(r̂) =
(kI(r̂)− C) a(r̂)

α(r̂)
√

(kI(r̂)− C)2 + α(r̂)2r̂4
(3.3.19)

where

I(r̂) =

∫
r̂2a(r̂)α(r̂)dr̂. (3.3.20)

Equation for h(r) can be obtained by integrating equation (3.3.19). Ex-

pression in such a form can not be solved easily (especially that we do not

know the analytical forms of metric functions for Boson Stars) using methods

others than numerical. Nevertheless we do not need to solve such an equa-

tion, because the compacti�ed metric functions does depend only on h′(t).

The equation (3.3.19) depends on two parameters, which are not given - k

and C (except for course of Λ and φ0(0) that determine solution of α(r̂) and
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a(r̂)). Choice of values of those parameters seems to be free, but there are

some restrictions.

k < 0 implies that normal vector to hypersurface Σt is pointing into past,

which would bring to non-physical results. k then must be positive. Later we

will obtain other restrictions for C. k we will choose (following [LCCOG10a])

equal to 3.

3.3.3 h'(r) behaviour around r=0

We expand (3.3.19) in power series, and compare coe�cients we can obtain

behaviour of h′(r) around r = 0:

1. C 6= 0

h′(r) = − 1

α0(0)
+ h2r

2 + h4r
4 +O(r)6, (3.3.21)

2. C = 0

h′(r) =
k

12α(0)
r + h̄3r

3 + o(r5), (3.3.22)

where h2 and h4 are rather complicated in its form rational functions of

k, C, φ0(0), α(0) and Λ and can be found in Appendix A.2. This formula is

useful in further studies of behaviour of background functions in section 4.1.

3.4 Metric compacti�cation

Degree of complication of equations obtained leads to necessity of numeri-

cal approach. In�nite domain causes trouble on choice of the cut-o� radius,

therefore the compacti�ed domain with �nite size is most desirable for com-

putational methods. Following (3.2.1) compacti�cation of coordinate r̂ and

rescaling the metric by a conformal factor Ω (not to be misunderstood as

metric on S2), leads to metric form (3.2.3):

ds2 =− Ω2α (r)2 dτ 2 − 2α (r)2 h′ (r) (Ω− rΩ′) dτdr+

+

(
−α (r)2 h′ (r)2 + a (r)2

)
Ω2

(Ω− rΩ′)
2
dr2 + r2dΩ̂2.

(3.4.1)
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Expression above is general, the choice of conformal factor Ω is restricted

by regularity of Ricci scalar. Following [BZ09], in case of Boson stars, we

choose:

Ω =
1− r2

2
,

r̂(r) =
r

Ω
=

2r

1− r2
,

(3.4.2)

that was proved to have regular Ricci scalar in whole domain.

To conclude we can list the steps needed to obtain compacti�ed metric

for Boson Stars:

1. Solve the set of equations (2.2.5), using shooting method to ensure

φ0(r̂ → +∞) = 0 for big-but-�nite r̂.

2. Fit 'mass' function (2.2.7) to last points calculated for a(r̂).

3. Match Schwarzschield solution for higher r̂.

4. Find values of h′(r̂) from (3.3.19).

5. Compactify metric by (3.4.1) for conformal factor Ω = 1−r2

2
.

The �gure 3.2 shows solutions of a(r̂), α(r̂), h′(r̂) and gtt(r) (compacti�ed

space-time), calculated for Λ = 20, φ0(0) = 0.1, k = 3, C = 0.
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Figure 3.2: A - metric function for time for Boson Star space-time; B -

metric function for radius for Boson Star space-time; C - height function's

derivative; D - gtt element for metric of compacti�ed Boson Star space-time;

All calculation are made for parameter values: Λ = 20, φ0(0) = 0.1. The

height function's derivative and metric compacti�cation are computed with

k = 3 and C = 0. Obtained parameter α(0) = 0.7990477629
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Chapter 4

Wave equation

In Chapter 4 the system of equations equivalent to wave equa-

tion will be proposed. Regularity of background function in

the system of equations will be examined. Candidates for

initial values of function will be proposed. The results of nu-

merical calculation will be discussed.

29



30 CHAPTER 4. WAVE EQUATION

The wave equation in any non-compacti�ed space-time is given by:

�̂gφ̂ = 0, (4.0.1)

where �̃g· = 5µ 5µ · = 1√
−g
∂µ (

√
−ggµν∂ν ·).

After compacti�cation we obtained metric useful for numerical computa-

tion, but not physical - what we are interested in is evolution of scalar �eld

φT on non-compacti�ed space-time (3.3.14). Such goal can be achieved by

�nding the form of equation (4.0.1) that its solution will be scaled function

φT (t, r) = Ωφ̂T (t, r̂). Following [Zen10] we can write:

(
�g −

R

6

)
φT (t, r, θ, ϕ) = Ω−3

(
�̂g −

R̂

6

)
φ̂T (t, r, θ, ϕ) = 0, (4.0.2)

where R and R̂ are Ricci scalars for compacti�ed and non-compacti�ed

metric respectively. As we can see (4.0.2) in non-compacti�ed space-time has

a term proportional to Ricci scalar (which do not take place in (4.0.1)).

For Schwarzschield space-time it has no di�erence (since R̂Schwarzschield =

0) for solutions. For Boson Stars it will not in�uence on behaviour of φ̂T for

t→ ∞, which is all we are interested in.

To simplify, using spherical symmetry we can substitute: φT (t, r, θ, ϕ) =

φ(t, r)Yl,m(θ, ϕ), where Yl,m(θ, ϕ) are spherical harmonics.

4.1 Splitting into set of equations

First we will one more time use the similarity of obtained metric (3.2.3) and

the one describing the general case of 3+1 model. This time we will �nd the

formulas of laps function ᾰ, shift function β̆ and function γ̆ (that is what was

left form induced metric γij after applying spherical symmetry condition) in

a form analogical to (3.3.13):

γ̆(r)2 =
(a(r)2 − α(r)2h′(r)2) (Ω− r∂rΩ)

2

Ω2
, (4.1.1a)
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β̆(r) = −α(r)
2h′(r) (Ω− r∂rΩ)

γ̆(r)2
, (4.1.1b)

ᾰ(r)2 = α(r)2Ω2 + β̆(r)2γ̆(r)2. (4.1.1c)

We will refer to the functions above as background functions. It is not ob-

vious that those functions are regular (in particularly, since h′(0) = 1
α(0)

, the

function γ̆(r)
r→0−−→ 0 and both ᾰ(r)2 and β̆(r) are proportional to 1

γ̆(r)2
. We

will study the potential points where poles may appear in subsection 4.1.1.

System of equations (4.0.2) contain terms ∝ ∂µ∂ν · therefore we need

new variables (functions of time and radius) for numerical computation. We

introduce:

π(t, r) =
γ̆

ᾰ
∂tφ− γ̆

ᾰ
β̆∂rφ, (4.1.2a)

ψ(t, r) = ∂rφ. (4.1.2b)

Expressions with background functions ᾰ, β̆, γ̆ might be in general singu-

lar - there is no rule forbidding them to be in�nite or 0 in some points. We

could compensate such poles with proper behaviour of dynamical �elds, but

it would be easier to �nd such a set of parameters, that those expressions are

regular everywhere.

4.1.1 Study of regularity of background functions

We can �nd two of those points. r = 0 where γ̆ = 0 (for C 6= 0), and

r = 1. In the second part we have lim
r→1

γ̆ = 0
0
, because: Ω = 1−12

2
= 0 and

a(r)2 − h′(r)2α(r)2 = 12 − 1212 = 0.

r = 0

We have already found the Power series of α(r̂) and a(r̂) (Appendix A.1) and

h′(r̂) (Appendix A.2). Knowing that:

Ω =
1− r2

2
,
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Ω− r∂rΩ =
1 + r2

2
,

we can �nd expansion of background functions:

ᾰ(r) =
C2

64r4
− 3C2

32r2
− Ckα(0)

12r
+

(
15C2

64
+
α(0)2

4

)
+

+
Ck (5α(0)2 − 2φ0(0)

2) r

20α(0)
+ o(r2),

(4.1.4)

β̆(r) =
C2

32α(0)r4
− C2(5α(0)2 + 2φ0(0)

2)

32α(0)3r2
− Ck

6r
+

+
1

144α(0)5
(36α(0)6 − C2(Polynomial(φ0(0), α(0),Λ)))+

+
1

15
Ck(5 +

2φ0(0)
2

α(0)2
)r + o(r2),

(4.1.5)

γ̆(r) = o(r4). (4.1.6)

Equations (4.1.4) and (4.1.5) are singular in r = 0 for every constant

C 6= 0. For this model only C = 0 integration constant can give regular

background.

For C = 0:

ᾰ(r) =
α(0)2

4
+ o(r2), (4.1.7)

β̆(r) = −1

3
(kα(0))r + o(r3), (4.1.8)

γ̆(r) = 1 +

(
−4k2

9
+

2φ0(0)
2 (2 + α(0)2 (2 + Λφ0(0)

2))

3α(0)2

)
r2 + o(r4). (4.1.9)

all of the functions are regular.
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In (4.1.19) there is one more complex function ᾰ
γ̆
that might have pole

for C 6= 0 in r = 0 (since γ̆(0) = 0). Since for C = 0, γ(0) = 1 we assured

regularity of such function in r=0. Nevertheless let us name it Ξ(r):

Ξ(r) =
α(0)2

4
+

1

18

(
6φ0(0)

2 + α(0)2
(
4k2 − 3

(
3 + 4φ0(0)

2 + 2Λφ0(0)
4
)))

r2 + o(r4).

(4.1.10)

Ξ(r) is regular in r = 0 and it's �rst derivative disappears in that point.

Similarly we can de�ne function Υ = ᾰγ̆:

α(0)2

4
+

(
−α(0)

2

2
+ φ0(0)

2

)
r2 + o(r4), (4.1.11)

regular in r = 0 as well.

To examine one more important feature of functions β̆, Ξ and Υ we

calculated them with bigger accuracy (metric function with o(r14)), which

gave us an important conclusion:

Around r = 0 function β̆ is odd and functions Ξ and Υ are even.

which will allow us to estimate its numerical derivative around r = 0.

r = 1

It is much easier to look for poles in this case, because we can calculate

the explicit analytical form of those functions using properties of Boson Star

space-times (for r → +∞ space-time goes to Schwarzschield space-time) and

explicit expression for function h′(r̂) (from (3.3.19)), where α(r̂) =
√
1− 2M

r̂
,

a(r̂) = 1
α(r̂)

and I(r̂) = r̂3

3
:

h′(r̂) =
(kI(r̂)− C) a(r̂)

α(r̂)
√

(kI(r̂)− C)2 + α(r̂)2r̂4

=
2
(
−C − 8kr̂3

3(−1+r̂2)3

)
(
2 + 2M

(
−1

r̂
+ r̂
))√(

C + 8kr̂3

3(−1+r̂2)3

)2
+ 8r̂3(2r̂+2M(−1+r̂2))

(−1+r̂2)4

.

(4.1.12)
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Similarly we can �nd explicit forms of all of background functions showing

γ̆(r)
r→1−−→ constant :

Expression for functions are given by:

ᾰ(r) =

√
9(2M) (−1 + r2)3 + 2r (9 + 2 (−9 + 2k2) r2 + 9r4)

72r
, (4.1.13a)

β̆(r) =
−k
√
r3
(
9(2M) (−1 + r2)3 + 2r (9 + 2 (−9 + 2k2) r2 + 9r4)

)
9
√
2 (r + r3)

,

(4.1.13b)

γ̆(r) =

√
18r (1 + r2)2

9(2M) (−1 + r2)3 + 2r (9 + 2 (−9 + 2k2) r2 + 9r4)
. (4.1.13c)

With values in r = 1:

ᾰ(1) =
k

3
,

β̆(1) = −k
2

9
,

γ̆(1) =
3

k
.

4.1.2 Ricci scalar

Since system of equations (4.1.19) contains part proportional to Ricci Scalar,

we should �nd it's form. Out of de�nition Ricci scalar is:

R = gµνRµν = gµνRρ
µρν , (4.1.15)

where Rµν is Ricci tensor and R
ρ
µλν Riemann curvature tensor. Expression

for Ricci scalar can be found using metric Ansatz (here (3.4.1)) by directly

deriving Christo�el symbols Γα
βγ. Calculations were done inMathematica 8.0,

using di�geo.m library:
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R =
2

r2a(r)3α(r)(−Ω(r) + rΩ′(r))3
(−a(r)3α(r)(Ω(r)− rΩ′(r))3+

+ rΩ(r)a′(r)(−Ω(r) + rΩ′(r))(rΩ(r)α′(r) + α(r)(2Ω(r) + rΩ′(r)))+

+ a(r)(α(r)(Ω(r)3 − 3r2Ω(r)Ω′(r)2 − r3Ω′(r)3+

+ 3rΩ(r)2(Ω′(r) + rΩ′′(r))) + rΩ(r)(−3r2α′(r)Ω′(r)2+

+ Ω(r)2(2α′(r) + rα′′(r)) + rΩ(r)(−rΩ′(r)α′′(r)+

+ α′(r)(Ω′(r) + rΩ′′(r)))))),

(4.1.16)

where F ′(r) = dF
dr

and F ′′(r) = d2F
dr2

for any function F ∈ {a, α,Ω}.
For r

r̂→∞−−−→ 1 when space-time goes to Schwarzschield-like we can simplify

expression (4.1.16):

R = −12(−1 + r2)(r(3 + r2) + 2M(−1 + 2r2 + r4))

r(1 + r2)3
, (4.1.17)

and

R(r = 1) = 0. (4.1.18)

Ricci scalar will be regular in whole domain, because of our choice of

conformal factor Ω [LCCOG10a].

4.1.3 System of equations

Equation (4.0.2) with angular term separation and new variables as above

will change into system of equations:

∂tπ =
1

r2
∂r

(
r2
(
β̆π +

ᾰ

γ̆
ψ

))
− ᾰγ̆

(
1

6
Rφ+

l(l + 1)

r2
φ

)
, (4.1.19a)

∂tφ =
ᾰ

γ̆
π − β̆φ, (4.1.19b)

where (4.1.19b) is just rewritten (4.1.2a). We solve system above numer-

ically using method of lines with fourth-order accurate stencils and fourth-

order Runge-Kutta method along time coordinate.
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4.2 Solution

Figure 4.1 shows background function as discussed in previous sections.
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Figure 4.1: A - Ricci scalar; B - background function β̆; C - background

function Ξ; D - background function Υ; Calculated for parameters: Λ ∈
{0, 10, 20, 40}, φ0(0) = 0.1, k = 3, C = 0.

We attempt to solve system of equations (4.1.19) with di�erent initial

conditions:

φ(r, 0) = 0, (4.2.1a)

ψ(r, 0) = 0, (4.2.1b)
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π(r, 0) = Ae−
tan (r arctan 1)2

σ2 . (4.2.1c)

It di�ers from approach in [LCCOG10a].

Firstly the system of equations (4.1.19) contains evolution of �elds π and

φ (�eld ψ is derived from (4.1.2b)). Lora-Clavijo, Cruz-Osorio and Guzmán

evolve �elds ψ and pi and �eld φ derived afterwards.

Secondly the initial data we used is di�erent from one in [LCCOG10a].

Due to lack of time we did not �nished calculations. We obtained �rst

results, that suggest that method we used returns stable outcome. In close

future we hope to �nish calculations and obtain the answers to the tail decay

problem.
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Chapter 5

Conclusions

We have obtained the metric functions a(r) and α(r) of Boson Star for given

parameters. They are shown on �gure 5.1
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Figure 5.1: Metric functions α(r̂)2 (left plot) and a(r̂)2 (right plot) for pa-

rameters as written on the plots.

They �t to expected Schwarzschield metric for large r̂. The height func-

tions derivative was found (on �gure 5.2), matching it's equivalent in Schwarzschield

metric, as well as background functions for wave equation (4.1.19).

All those functions match with their Schwarzschield equivalents for large

r̂.

Initial conditions (4.2.1) di�ers from ones used in [LCCOG10b], [LC-

39
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Λ = 0, φ0(0) = 0.1 and C = 0.

COG10a]:

φ(r, 0) = Ae−
r2

σ2 , (5.0.1a)

ψ(r, 0) = −2
r

σ2
Ae−

r2

σ2 , (5.0.1b)

π(r, 0) = −ψ(r, 0)− φ(r, 0)

r

(
1− β̆γ̆

ᾰ

)
, (5.0.1c)

but since π(r, 0) has a pole in r = 0 conditions proposed by Lora-Clavijo,

Cruz-Osorio and Guzmán are not suitable for space-time without horizon.

The choice of initial data does not in�uence the tail decay, therefore we

choose simpler data.

Taylor series of functions φ, ψ and π show that they have certain kind of

symmetry around r = 0:

1. For l even - φ and π are even and ψ is odd,

2. for l odd - φ and π are odd and ψ is even.
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Symmetry relations are important in calculation estimated (here four-

point) derivative of functions around r = 0.

The problem is accuracy - we used 10−15 accuracy in both programs. The

bisection is using initial values with order of the magnitude 0, but still a full

range of accuracy is used in computation.

We have not achieve our goal - the tail decay of scalar �eld φ, therefore

it can not be examined whether it behaves like t−p.

First try-outs on of numerical approach described in section 4.2 with

simpler background showed proper behaviour (no explosion) of �elds. The

work is in progress next moths will probably give an answer to the question

if φ approches zero in in�nity like t−p.
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Chapter 6

Numerical methods used

In Chapter 6 the numerical methods used in the thesis will be

brie�y discussed. With Runge-Kutta method, the bisection

method used in solving the system of equation (2.2.3) will

be explained. The method of lines used to solve (4.1.19),

for four-point radial derivative approximation and Runge-

Kutta fourth-order method as a time integrator will be de-

scribed. The Cubic spline interpolation, used in interpolating

the background will be explained.

43
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Numerical methods were based on those formed in [PTVF07].

6.1 Runge-Kutta method of solving di�erential

equations

For ordinary di�erential equation given by:

df

dx
= F (x, f), (6.1.1)

we can calculate value of the function fi+1 in the point xi+1 from it's value

fi in xi by moving on the tangent line given by the value of it's derivative:

fi+1 = fi + (xi+1 − xi)F (xi, fi). (6.1.2)

Since it's using only value of derivative in starting point the �rst clue to

achieve higher accuracy would be to use more of the points on the way (with

h = xi+1 − xi):

k1 = hF (xi, fi),

k2 = hF

(
xi +

h

2
, fi +

k1
2

)
,

fi+1 = fi + k2 +O(h3).

(6.1.3)

Expression above is second order Runge-Kutta method. In calculations

we used fourth order Runde Kutta method, where step is calculated:

k1 = hF (xi, fi),

k2 = hF

(
xi +

h

2
, fi +

k1
2

)
,

k3 = hF

(
xi +

h

2
, fi +

k2
2

)
,

k2 = hF (xi + h, fi + k3) ,

fi+1 = fi +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 +O(h5).

(6.1.4)
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Shooting method is used to satisfy boundary value problems. In our

case we want to assure φ0(r) from (2.2.3) to be equal to 0 in in�nity. We

manipulate initial value of the function (in our case, since it's system of

equations, one of initial values), to achieve that condition.

As it was shown in [FLP87], the system of equations (2.2.3) has a count-

able sequence of solutions satisfying the condition φ(r → ∞) = 0. We are

interested in the one having no zeros (φ0), thus we do bisection in two steps:

1. We search for solution having possibly small number of zeros, and the

solution with close initial value, no zeros but not necessarily satisfying

condition in in�nity.

2. We bisect the interval between two initial values found in step 1, as

long as accuracy of integrator allows us.

6.2 Line method of solving partial di�erential

equations

We have partial di�erential equation given by:

∂x0f = F (x0, x1, . . . , xn, ∂x1f, . . . , ∂xnf), (6.2.1)

for n + 1 dimensional function f . We build the lattice in n dimensions -

points fi1...in , which we evolve with ordinary integator (for example Runge-

Kutta fouth-order method). The partial derivative of all but x0 variables we

estimate using m-points. For example �rst derivative in four-point method

is given by:

∂xf =
−fi−2 + 8fi−1 − 8fi+1 + fi+2

12
, (6.2.2)

assuming 1+1 case (in more general more indexes in f appears, but all

except one from derivative are not changed.
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6.3 Cubic spline interpolation

Cubic Spline Interpolation is an extended version of linear interpolation as-

suring continuity of second derivative.

Let us assume we have function f(x) tabulated as fi = f(xi). Then the

linear interpolation is given by:

f = Afj +Bfj+1, (6.3.1)

where

x ∈ [xj, xj+1] ,

A =
xj+1 − x

xj+1 − xj
,

B =
x− xj
xj+1 − xj

= 1− A.

We extend it to:

f = Afj +Bfj+1 + Cf ′′
j +Df ′′

j+1, (6.3.2)

where f ′′
i are tabulated second derivatives, A and B are the same as for

linear interpolation and

C =
1

6

(
A3 − A

)
(xj+1 − xj)

2 ,

D =
1

6

(
B3 −B

)
(xj+1 − xj)

2 .

We use the interpolation for �nding even lattice of background functions,

since their components calculated in non-compacti�ed space-time will not

be uniformly distributed in compacti�ed space-time. We calculate second

derivatives in non-compacti�ed space-time using four-point estimation.



Appendix A

Taylor series coe�cient for

functions used

A.1 Boson Star equation

In (2.2.5) we has three functions: α(r̂), a(r̂) and φ0(r̂). Around r = 0 the

Taylor series with o(r̂14) can be written as:

a(r̂) =a0 + a1r̂ + a2r̂
2 + a3r̂

3 + a4r̂
4 + a5r̂

5 + a6r̂
6 + o(r̂8), (A.1.1)

α(r̂) =α0 + α1r̂ + α2r̂
2 + α3r̂

3 + α4r̂
4 + α5r̂

5 + α6r̂
6 + o(r̂8), (A.1.2)

φ0(r̂) =ϕ0 + ϕ1r̂ + ϕ2r̂
2 + ϕ3r̂

3 + ϕ4r̂
4 + ϕ5r̂

5 + ϕ6r̂
6 + o(r̂8). (A.1.3)

To ful�l system (2.2.5) coe�cient must be equal to:

a2i+1 = α2i+1 = ϕ2i+1 = 0, i ∈ {0, 1, 2, 3}.

1. a0 = 1

2. a2 = 1
3
(
ϕ2
0

2
+

ϕ2
0

2α2
0
+

Λϕ4
0

4
)
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3. a4 = 1
1440α4

0
(−32ϕ2

0 − 32α2
0ϕ

2
0 + 64α4

0ϕ
2
0 − 36ϕ4

0 + 168α2
0ϕ

4
0 + 60α4

0ϕ
4
0 −

32α2
0Λϕ

4
0 + 128α4

0Λϕ
4
0 + 84α2

0Λϕ
6
0 + 60α4

0Λϕ
6
0 + 64α4

0Λ
2ϕ6

0 + 15α4
0Λ

2ϕ8
0)

4. a6 = 1
120960α6

0
(192ϕ2

0+192α2
0ϕ

2
0−960α4

0ϕ
2
0+576α6

0ϕ
2
0+704ϕ4

0−5024α2
0ϕ

4
0+

1408α4
0ϕ

4
0+3488α6

0ϕ
4
0+768α2

0Λϕ
4
0− 3648α4

0Λϕ
4
0+2880α6

0Λϕ
4
0+56ϕ6

0−
1080α2

0ϕ
6
0+7176α4

0ϕ
6
0+1400α6

0ϕ
6
0−3840α2

0Λϕ
6
0+3664α4

0Λϕ
6
0+8720α6

0Λϕ
6
0−

2688α4
0Λ

2ϕ6
0 + 4032α6

0Λ
2ϕ6

0 − 540α2
0Λϕ

8
0 + 7176α4

0Λϕ
8
0 + 2100α6

0Λϕ
8
0 +

2256α4
0Λ

2ϕ8
0+6976α6

0Λ
2ϕ8

0+1728α6
0Λ

3ϕ8
0+1794α4

0Λ
2ϕ10

0 +1050α6
0Λ

2ϕ10
0 +

1744α6
0Λ

3ϕ10
0 + 175α6

0Λ
3ϕ12

0 )

1. α0 = α0

2. α2 =
4ϕ2

0−2α2
0ϕ

2
0−α2

0Λϕ
4
0

12α0

3. α4 = 1
1440α3

0
(−48ϕ2

0 + 72α2
0ϕ

2
0 − 24α4

0ϕ
2
0 + 16ϕ4

0 + 32α2
0ϕ

4
0 − 20α4

0ϕ
4
0 +

72α2
0Λϕ

4
0 − 48α4

0Λϕ
4
0 + 16α2

0Λϕ
6
0 − 20α4

0Λϕ
6
0 − 24α4

0Λ
2ϕ6

0 − 5α4
0Λ

2ϕ8
0)

4. α6 = 1
362880α5

0
(768ϕ2

0 − 1920α2
0ϕ

2
0 + 1536α4

0ϕ
2
0 − 384α6

0ϕ
2
0 − 320ϕ4

0 −
3520α2

0ϕ
4
0+6416α4

0ϕ
4
0−2288α6

0ϕ
4
0−2976α2

0Λϕ
4
0+4896α4

0Λϕ
4
0−1920α6

0Λϕ
4
0−

1344ϕ6
0 +3744α2

0ϕ
6
0 +144α4

0ϕ
6
0 − 840α6

0ϕ
6
0 − 1584α2

0Λϕ
6
0 +9896α4

0Λϕ
6
0 −

5720α6
0Λϕ

6
0 + 3360α4

0Λ
2ϕ6

0 − 2688α6
0Λ

2ϕ6
0 + 1872α2

0Λϕ
8
0 + 144α4

0Λϕ
8
0 −

1260α6
0Λϕ

8
0 + 3480α4

0Λ
2ϕ8

0 − 4576α6
0Λ

2ϕ8
0 − 1152α6

0Λ
3ϕ8

0 + 36α4
0Λ

2ϕ10
0 −

630α6
0Λ

2ϕ10
0 − 1144α6

0Λ
3ϕ10

0 − 105α6
0Λ

3ϕ12
0 )

1. ϕ0 = ϕ0

2. ϕ2 =
−ϕ0+α2

0ϕ0+α2
0Λϕ

3
0

6α2
0

3. ϕ4 =
1

360α4
0
(3ϕ0−6α2

0ϕ0+3α4
0ϕ0+8ϕ3

0− 12α2
0ϕ

3
0+10α4

0ϕ
3
0− 12α2

0Λϕ
3
0+

12α4
0Λϕ

3
0 − 4α2

0Λϕ
5
0 + 15α4

0Λϕ
5
0 + 9α4

0Λ
2ϕ5

0 + 5α4
0Λ

2ϕ7
0)

4. ϕ6 = 1
45360α6

0
(−9ϕ0 + 27α2

0ϕ0 − 27α4
0ϕ0 + 9α6

0ϕ0 − 136ϕ3
0 + 456α2

0ϕ
3
0 −

618α4
0ϕ

3
0 + 298α6

0ϕ
3
0 + 153α2

0Λϕ
3
0 − 306α4

0Λϕ
3
0 + 153α6

0Λϕ
3
0 − 112ϕ5

0 +

296α2
0ϕ

5
0−248α4

0ϕ
5
0+280α6

0ϕ
5
0+312α2

0Λϕ
5
0−1227α4

0Λϕ
5
0+1065α6

0Λϕ
5
0−

315α4
0Λ

2ϕ5
0+315α6

0Λ
2ϕ5

0+132α2
0Λϕ

7
0−88α4

0Λϕ
7
0+560α6

0Λϕ
7
0−477α4

0Λ
2ϕ7

0+
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1122α6
0Λ

2ϕ7
0 + 171α6

0Λ
3ϕ7

0 + 18α4
0Λ

2ϕ9
0 + 350α6

0Λ
2ϕ9

0 + 355α6
0Λ

3ϕ9
0 +

70α6
0Λ

3ϕ11
0 )

Signi�cant in�uence on numerical method has F0 (where F is any of

functions above) as its value in r = 0 and F1 = 0 as value of its derivative

in r = 0 (since equations contain r−1 and r−2 terms). Since to numerically

compute system (2.2.5) we introduce new function ξ(r̂) = ∂r̂ϕ0(r̂) important

will be ϕ1 = 0 and 2ϕ2 as value of ξ and its derivative in r = 0.

Calculating 7 coe�cients to each function seems to be waste of time, but

it is necessary to study behaviour of solution to wave equation (4.1.19) (and

with good accuracy).

A.2 Heights function

Taylor series of heights function's derivative has a point in �nding it's value

in r = 0, then:

dh

dr̂
= h′(r̂) = h0 + h1r̂ + h2r̂

2 + o(r̂3). (A.2.1)

C 6= 0

1. h0 = − 1
α0
,

2. h1 = 0,

3. h2 =
ϕ2
0+k2ϕ2

0−2α2
0ϕ

2
0−2k2α2

0ϕ
2
0−α2

0Λϕ
4
0−k2α2

0Λϕ
4
0

6
√

(1+k2)2α3
0

.

C = 0

1. h̄0 = 0 ,

2. h̄1 = k
12α(0)

,

3. h̄2 = 0 ,

4. h̄3 = −((2880kα(0)2+5k3α(0)2+288kϕ0(0)2−720kα(0)2ϕ0(0)2−360kα(0)2Λϕ0(0)4))
17280α(0)3

,
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5. h̄4 = 0 .



Appendix B

Time dependence of �eld Φ

Lagrangian density given in (2.1.1) is invariant under the global gauge trans-

formation, the conserved current jµ implied by Noether theorem is given

by:

jµ = −i (Φ∗∂νΦ− ∂νΦ
∗Φ) gνµ. (B.0.1)

Number of particles is given by N =
∫
d3xjt

√
−g. We need to �nd time

coordinate for the current, assuming gtµ = 0, ∀µ 6= t:

jt = −i (Φ∗∂tΦ− ∂tΦ
∗Φ) gtt. (B.0.2)

Additionally splitting the complex �eld Φ into two real �elds:

Φ =
ΦR + iΦI√

2
, (B.0.3)

we obtain:

N = −i
∫
d3x (ΦR∂tΦI − ∂tΦRΦI) g

tt
√
−g. (B.0.4)

Minimising energy of the system we obtain (following [FLP87]):

δ (E + ωN) = 0 (B.0.5)

where ω is Lagrange multiplier. Direct calculation leads to the system of

equations:
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∂tΦR = ωΦI , (B.0.6a)

∂tΦI = −ωΦR, (B.0.6b)

that can be satisfy by:

Φ(~x, t) = φ(~x)e−iωt. (B.0.7)

Applying spherical symmetry will simplify φ(~x) → φ(r).



Appendix C

List of attachments

Part or this thesis are as well as above text:

1. Program BosonStarMetricCompac (source: bosonstar.f95) computing:

• solution of set of equations (2.2.5) with respect of parameters Λ

(de�ned in (2.2.4e)) and φ0(0) - output �le: 'bosonS.dat',

• numerical values of h′(r̂) (de�ned in (3.3.19)) - output �le: 'height.dat',

• numerical values of Ricci scalar for compacti�ed space-time () -

output �le: 'RicciS.dat',

• numerical values of functions ᾰ(r), β̆(r), γ̆(r) (de�ned in (4.1.1))

- output �le : 'backgr.dat',

• intepolation of Ricci scalar and ᾰ(r), β̆(r), γ̆(r) functions on even

lattice, prepared as an input �le for program solving wave equation

- output �le : 'output.dat'.
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